电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 平面解析几何 第八节 直线与圆锥曲线夯基提能作业本 文-人教版高三数学试题VIP免费

高考数学一轮复习 第九章 平面解析几何 第八节 直线与圆锥曲线夯基提能作业本 文-人教版高三数学试题_第1页
1/12
高考数学一轮复习 第九章 平面解析几何 第八节 直线与圆锥曲线夯基提能作业本 文-人教版高三数学试题_第2页
2/12
高考数学一轮复习 第九章 平面解析几何 第八节 直线与圆锥曲线夯基提能作业本 文-人教版高三数学试题_第3页
3/12
第八节直线与圆锥曲线A组基础题组1.直线mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点个数是()A.至多一个B.2C.1D.02.已知经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q,则k的取值范围是()A.B.∪C.(-,)D.(-∞,-)∪(,+∞)3.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线()A.有且只有一条B.有且只有两条C.有且只有三条D.有且只有四条4.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则·等于()A.-3B.-C.-或-3D.±5.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.3C.4D.86.已知抛物线x2=ay与直线y=2x-2相交于M,N两点,若MN中点的横坐标为3,则此抛物线方程为.7.已知椭圆C:+=1(a>b>0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2,则椭圆C的方程为.8.设双曲线-=1的右顶点为A,右焦点为F.过点F且平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为.9.椭圆C:+=1(a>b>0)过点,离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点.(1)求椭圆C的方程;(2)当△F2AB的面积为时,求直线的方程.10.在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其他公共点?说明理由.B组提升题组11.设抛物线E:y2=4x的焦点为F,直线l过F且与E交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x-1或y=-x+1B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)12.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若·=0,则k=.13.(2015北京朝阳一模)已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(-2,0),F2(2,0),离心率为.过点F2的直线l(斜率不为0)与椭圆C交于A、B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.(1)求椭圆C的方程;(2)当四边形MF1NF2为矩形时,求直线l的方程.14.(2016北京丰台一模)已知椭圆C:+=1(a>b>0)过点A(2,0),离心率e=,斜率为k(02,∴m2+n2<4,∴+<+=1-m2<1,∴点(m,n)在椭圆+=1的内部,∴过点(m,n)的直线与椭圆+=1的交点有2个.2.B由题意得,直线l的方程为y=kx+,代入椭圆方程得+(kx+)2=1,整理得x2+2kx+1=0.直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4=4k2-2>0,解得k<-或k>,即k的取值范围是∪.故选B.3.B 2p=2,|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有两条.4.B依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,∴·=-,同理,直线l经过椭圆的左焦点时,也有·=-.5.C y2=4x,∴F(1,0),准线l:x=-1,∴过焦点F且斜率为的直线l1的方程为y=(x-1),与y2=4x联立,解得或由题易知A(3,2),∴AK=4,∴S△AKF=×4×2=4.6.答案x2=3y解析设点M(x1,y1),N(x2,y2).由消去y,得x2-2ax+2a=0,所以==3,即a=3,因此所求的抛物线方程是x2=3y.7.答案+=1解析由题意得解得∴椭圆C的方程为+=1.8.答案解析易知c=5,取过点F且平行于一条渐近线的直线方程为y=(x-5),即4x-3y-20=0,联立直线与双曲线方程,求得yB=-,则S=×(5-3)×=.9.解析(1)因为椭圆C:+=1(a>b>0)过点,所以+=1.①又因为离心率为,所以=,所以=.②联立①②解得a2=4,b2=3.所以椭圆C的方程为+=1.(2)当直线的倾斜角为时,A,B,则=|AB|·|F1F2|=×3×2=3≠.当直线的倾斜角不为时,设直线方程为y=k(x+1),代入+=1得(4k2+3)x2+8k2x+4k2-12=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=,所以=|y1-y2|·|F1F2|=|k|=|k|==,所以17k4+k2-18=0,解得k2=1,所以k=±1,所以所求直线的方程为x-y+1=0或x+y+1=0.10.解析(1)由已知得M(0,t),P.又N为M关于点P的对称点,故N,ON的方程为y=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 平面解析几何 第八节 直线与圆锥曲线夯基提能作业本 文-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部