第二节排列与组合A组基础题组1.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种2.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.×种B.×54种C.×种D.×54种3.(2017北京朝阳二模,5)现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为()A.12B.24C.36D.484.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为()A.8B.16C.24D.605.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种6.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球的个数都不同,则共有种不同放法.7.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,且甲同学不与老师相邻,则不同的站法种数为.8.用红、黄、蓝三种颜料对如图所示的三个方格进行涂色,要求每个小方格涂一种颜色,且涂成红色的方格数为,则不同的涂色方案种数是.(用数字作答)9.(1)已知=+1,求n;(2)若>3,求m.B组提升题组10.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有()A.900种B.600种C.300种D.150种11.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为()A.1860B.1320C.1140D.102012.2014年11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置没有要求,那么不同的排法共有()A.种B.种C.种D.种13.(2017北京西城二模,13)大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有种.(用数字作答)14.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为.15.已知10件不同的产品中有4件是次品,现对它们进行测试,直至找出所有次品.(1)若恰在第5次测试才测试到第1件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后就找出了所有次品,则这样的不同测试方法数是多少?答案精解精析A组基础题组1.A从a,b,c中任选两个排在第一行,有种方法,另一个字母在第二行,有种方法,其余则确定,共有·=12种方法,故选A.2.D有两个年级选择甲博物馆共有种情况,其余4个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的方案有×54种,故选D.3.D先从5张电影票中选出两张连号票,共4种方法;再把2张连号票分给甲、乙,共=2种方法;最后把剩余的3张票分给3个人,共=6种方法,所以共有不同分法的种数为4×2×6=48.4.C根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有=24种不同的坐法.5.D第一步:将4项工作分成3组,共有种分法.第二步:将3组工作分配给3名志愿者,共有种分配方法,故共有·=36种安排方式,故选D.6.答案18解析对这3个盒子中所放的小球的个数的情况进行分类.第一类:这3个盒子中所放的小球的个数分别是1,2,6,此类有=6种放法;第二类:这3个盒子中所放的小球的个数分别是1,3,5,此类有=6种放法;第三类:这3个盒子中所放的小球的个数分别是2,3,4,此类有=6种放法.因此共有6+6+6=18种满足题意的放法.7.答案12解析老师必须站在正中间,则老师的位置是指定的.甲同学不与老师相邻,则甲同学只能站两端,故不同的站法种数为=12.8.答案14解析当涂红色的方格数为0时,共有23=8种情况;当涂红色的方格数为2时,共有×=6种情况,则不同的涂色方案种数为8+6=14.9.解析(1)由=+1得=(...