电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 第八章第8课时 抛物线课时闯关(含解析)VIP免费

高考数学总复习 第八章第8课时 抛物线课时闯关(含解析)_第1页
1/2
高考数学总复习 第八章第8课时 抛物线课时闯关(含解析)_第2页
2/2
一、选择题1.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.-2B.2C.-4D.4解析:选D.由已知得椭圆+=1的右焦点为F(2,0),∴=2,得p=4.2.(2010·高考湖南卷)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12解析:选B.y2=8x的焦点是F(2,0),准线x=-2,如图所示,|PA|=4,|AB|=2,∴|PB|=|PF|=6.故选B.3.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±2xB.y2=±2xC.y2=±4xD.y2=±4x解析:选D.因为双曲线的焦点为(-,0),(,0).设抛物线方程为y2=±2px(p>0),则=,所以p=2,所以抛物线方程为y2=±4x.4.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是()A.B.C.D.解析:选B.根据抛物线定义可得,抛物线的准线方程为x=-4,则抛物线方程为y2=16x.把M(1,m)代入得m=4,即M(1,4).在双曲线-y2=1中,A(-,0),则kAM==.解得a=.5.已知抛物线C的顶点在坐标原点,焦点为F(1,0),过焦点F的直线l与抛物线C相交于A、B两点,若直线l的倾斜角为45°,则弦AB的中点坐标为()A.(1,0)B.(2,2)C.(3,2)D.(2,4)解析:选C.依题意得,抛物线C的方程是y2=4x,直线l的方程是y=x-1.由消去y得(x-1)2=4x,即x2-6x+1=0,因此线段AB的中点的横坐标是=3,纵坐标是y=3-1=2,所以线段AB的中点坐标是(3,2),因此选C.二、填空题6.已知抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=________.解析:抛物线y2=4x的焦点为F(1,0),准线为x=-1.根据抛物线的定义,点M到准线的距离为4,则M的横坐标为3.答案:37.(2012·开封质检)已知抛物线y=ax2(a≠0)的焦点为F,准线l与对称轴交于R点,过已知抛物线上一点P(1,2)作PQ⊥l于Q,则(1)抛物线的焦点坐标是________;(2)梯形PQRF的面积是________.解析:代入(1,2)得a=2,所以抛物线方程为x2=y,故焦点F.又R,|FR|=,|PQ|=2+=,所以梯形的面积为××1=.答案:(1)(2)8.已知抛物线型拱桥的顶点距离水面2米时,测量水面的宽度为8米,当水面上升米后,水面的宽度是________米.解析:设抛物线方程为x2=-2py(p>0),将(4,-2)代入方程得16=-2p·(-2),解得2p=8,故方程为x2=-8y,水面上升米,则y=-,代入方程,得x2=-8·(-)=12,x=±2.故水面宽4米.答案:4三、解答题9.抛物线顶点在原点,它的准线过双曲线-=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线的方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c·x,∵抛物线过点(,),∴6=4c·,∴c=1,故抛物线方程为y2=4x.又双曲线-=1过点(,),∴-=1.又a2+b2=c2=1,∴-=1.∴a2=或a2=9(舍).∴b2=,故双曲线方程为:4x2-=1.10.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥FA,垂足为N,求点N的坐标.解:(1)抛物线y2=2px的准线为x=-,于是4+=5,∴p=2.∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴kFA=,∵MN⊥FA,∴kMN=-.又FA的方程为y=(x-1),故MN的方程为y-2=-x,解方程组得x=,y=,∴N的坐标为.11.已知直线AB与抛物线y2=2px(p>0)交于A,B两点,且以AB为直径的圆经过坐标原点O,OD⊥AB于点D,点D的坐标为(2,1),求抛物线的方程.解:由题意得kOD=,∵AB⊥OD,∴kAB=-2,又直线AB过点D(2,1),∴直线AB的方程为y=-2x+5,设A(x1,y1),B(x2,y2),∵以AB为直径的圆过点O,∴OA·OB=0,即x1x2+y1y2=0,由得4x2-(2p+20)x+25=0,∴x1+x2=,x1x2=,∴y1y2=(-2x1+5)(-2x2+5)=4x1x2-10(x1+x2)+25=25-5p-50+25=-5p,∴+(-5p)=0,∴p=,∴抛物线方程为y2=x.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 第八章第8课时 抛物线课时闯关(含解析)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部