[练案46]第五讲直线、平面垂直的判定与性质A组基础巩固一、单选题1.(2019·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是(C)A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[解析]对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b.故选C.2.(2020·湖北省黄冈市质检)若l,m为两条不同的直线,α为平面,且l⊥α,则“m∥α”是“l⊥m”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]由l⊥α,m∥α,∴l⊥m反之不成立,可能m⊂α.3.(2019·福建泉州质检)如图,在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是(D)[解析]如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意.故选D.4.(2019·天津模拟)设l是直线,α,β是两个不同的平面,则下列说法正确的是(B)A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β[解析]对于A项,若l∥α,l∥β,则α∥β或α与β相交,故A项错误;易知B项正确;对于C项,若α⊥β,l⊥α,则l∥β或l⊂β,故C项错误;对于D项,若α⊥β,l∥α,则l与β的位置关系不确定,故D项错误,故选B.5.(2019·河北衡水模拟)已知m,n,l是不同的直线,α,β是不同的平面,在下列命题中:①若m⊥n,l⊥n,则m∥l;②若m⊂α,n⊂β,m⊥n,则α⊥β;③若m∥l,m⊥α,l⊂β,则α⊥β;④若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β.其中正确命题的序号为(B)A.①③B.③④C.②④D.①③④[解析]如正方体同一个顶点的三条棱,满足①的条件,但三条棱都相交,故①错;如图,α∥β,故②错;因为m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β,故③正确;由面面垂直的性质知,④正确.故正确的命题为③④.故选B.6.(2019·长春质检)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是(D)A.平面ABD⊥平面ABCB.平面ACD⊥平面BCDC.平面ABC⊥平面BCDD.平面ACD⊥平面ABD[解析]由题意可知,AD⊥AB,AD=AB,所以∠ABD=45°,故∠DBC=45°,又∠BCD=45°,所以BD⊥DC.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD.7.(2020·宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是(D)A.①②B.②③C.②④D.①④[解析]①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD:④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.二、多选题8.(2020·广东珠海期末改编)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ垂直的是(ABC)9.如图,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,将△ABD沿对角线BD折起.设折起后点A的位置为A′,并且平面A′BD⊥平面BCD.给出下面四个命题:(CD)A.A′D⊥BCB.三棱锥A′-BCD的体积为C.CD⊥平面A′BDD.平面A′BC⊥平面A′DC[解析]如图所示:E为BD中点,连接A′E,AD∥BC,AD=AB=1,AD⊥AB得到∠DBC=∠ADB=45°,又∠BCD=45°,故△BCD为等腰直角三角形,平面A′BD⊥平面BCD,CD⊥BD,所以CD⊥平面A′BD,所以C正确,E为BD中点,A′E⊥BD,则A′E⊥平面BCD,所以A′E⊥BC.如果A′D⊥BC,则可得到BC⊥平面A′BD,故BC⊥BD与已知矛盾.故A错误;三棱锥A′-BCD的体积...