第三章导数及其应用第1讲变化率与导数、导数的运算一、选择题1.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-B.0C.D.5解析因为f(x)是R上的可导偶函数,所以f(x)的图象关于y轴对称,所以f(x)在x=0处取得极值,即f′(0)=0,又f(x)的周期为5,所以f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率为0,选B.答案B2.函数f(x)是定义在(0,+∞)上的可导函数,且满足f(x)>0,xf′(x)+f(x)<0,则对任意正数a,b,若a>b,则必有().A.af(b)
0),F′(x)=,由条件知F′(x)<0,∴函数F(x)=在(0,+∞)上单调递减,又a>b>0,∴<,即bf(a)0),则f(2)的最小值为().A.12B.12+8a+C.8+8a+D.16解析f(2)=8+8a+,令g(a)=8+8a+,则g′(a)=8-,由g′(a)>0得a>,由g′(a)<0得0