第二章函数、导数及其应用第一节函数及其表示[考情展望]1.考查给定函数(或抽象函数)的定义域.2.以分段函数为载体,考查函数的求值、值域及参数的范围等问题.3.以新定义、新情景为载体,考查函数的表示方法、最值等问题.一、函数及映射的概念函数映射两集合A、B设A、B是两个非空数集设A、B是两个非空集合对应关系f:A→B如果按照某种确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射二、函数的定义域、值域、相等函数1.定义域在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫做函数的定义域.2.值域函数值的集合{f(x)|x∈A}叫做函数的值域.3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.三、函数的表示方法表示函数的常用方法有解析法、图象法和列表法.四、分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数三要点(1)分段函数是一个函数,切不可把它看成是几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.(2)一个函数只有一个定义域,分段函数的定义域只能写成一个集合的形式.(3)求分段函数的值域,应先求出各段函数在对应自变量的取值范围内的函数值的集合,再求出它们的并集.1.给出四个命题:①函数是其定义域到值域的映射;②f(x)=+是一个函数;③函数y=2x(x∈N)的图象是一条直线;④f(x)=lgx2与g(x)=2lgx是同一函数.其中正确的有()A.1个B.2个C.3个D.4个【答案】A2.下列函数中,与函数y=x相同的是()A.y=B.y=()2C.y=lg10xD.y=2log2x【答案】C3.已知f=x2+5x,则f(x)=________.【答案】+(x≠0)4.设函数f(x)=则f(f(3))=________.【答案】5.(2014·江西高考)函数f(x)=ln(x2-x)的定义域为()A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)【答案】C6.(2013·浙江高考)已知函数f(x)=.若f(a)=3,则实数a=________.【答案】10考向一[010]求函数的定义域(1)(2014·山东高考)函数f(x)=的定义域为()A.B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)(2)(2013·大纲全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1)B.C.(-1,0)D.【答案】(1)C(2)B规律方法11.本例(1)在求解中,常因遗忘“00无意义”而错选B;本例(2)在求解中;常因不理解f(x)与f(2x+1)的关系而错选A或C.2.(1)求函数的定义域往往归结为解不等式组的问题,取交集时可借助数轴,并注意端点值的取舍.(2)对抽象函数:①若函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.对点训练(1)函数f(x)=的定义域为()A.(-1,2)B.(-1,0)∪(0,2)C.(-1,0)D.(0,2)(2)已知函数f(2x)的定义域是[-1,1],则f(x)的定义域为________.【答案】(1)C(2)考向二[011]求函数的解析式(1)已知f(x+1)=lgx,求f(x);(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x);(3)已知f(x)+2f=x(x≠0),求f(x).【尝试解答】(1)令x+1=t,则x=t-1,∴f(t)=lg(t-1).∴f(x)=lg(x-1).(2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即2ax+a+b=x-1,∴即∴f(x)=x2-x+2.(3) f(x)+2f=x,∴f+2f(x)=.解方程组得f(x)=-(x≠0).规律方法2求函数解析式常用以下解法:(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f(x).对点训练(1)已知f(1-cosx)=sin2x,求f(x)的解析式;(2)若函数F(x)...