电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)备战高考数学 “3+1”保分大题强化练(七)理-人教版高三数学试题VIP免费

(新课标)备战高考数学 “3+1”保分大题强化练(七)理-人教版高三数学试题_第1页
(新课标)备战高考数学 “3+1”保分大题强化练(七)理-人教版高三数学试题_第2页
(新课标)备战高考数学 “3+1”保分大题强化练(七)理-人教版高三数学试题_第3页
“3+1”保分大题强化练七前3个大题和1个选考题不容有失1.数列{an}的前n项和Sn满足Sn=2an-n.(1)求证数列{an+1}是等比数列,并求an;(2)若数列{bn}为等差数列,且b3=a2,b7=a3,求数列{anbn}的前n项和.解:(1)证明:当n=1时,S1=2a1-1,所以a1=1.因为Sn=2an-n,①所以当n≥2时,Sn-1=2an-1-(n-1)②①-②得an=2an-2an-1-1,所以an=2an-1+1,所以===2.所以{an+1}是首项为2,公比为2的等比数列.所以an+1=2·2n-1,所以an=2n-1.(2)由(1)知,a2=3,a3=7,所以b3=a2=3,b7=a3=7.设{bn}的公差为d,则b7=b3+(7-3)·d,所以d=1.所以bn=b3+(n-3)·d=n.所以anbn=n(2n-1)=n·2n-n.设数列{n·2n}的前n项和为Kn,数列{n}的前n项和为Tn,则Kn=2+2×22+3×23+…+n·2n,③2Kn=22+2×23+3×24+…+n·2n+1,④③-④得,-Kn=2+22+23+…+2n-n·2n+1=-n·2n+1=(1-n)·2n+1-2,所以Kn=(n-1)·2n+1+2.又Tn=1+2+3+…+n=,所以Kn-Tn=(n-1)·2n+1-+2,所以{anbn}的前n项和为(n-1)·2n+1-+2.2.如图,三棱柱ABCA1B1C1中,底面ABC是等边三角形,侧面BCC1B1是矩形,AB=A1B,N是B1C的中点,M是棱AA1上的点,且AA1⊥MC.(1)证明:MN∥平面ABC;(2)若AB⊥A1B,求二面角ACMN的余弦值.解:(1)证明:在三棱柱ABCA1B1C1中,连接BM.因为侧面BCC1B1是矩形,所以BC⊥BB1.因为AA1∥BB1,所以AA1⊥BC.又AA1⊥MC,BC∩MC=C,所以AA1⊥平面BCM,所以AA1⊥MB,又AB=A1B,所以M是AA1的中点.取BC的中点P,连接NP,AP,因为N是B1C的中点,所以NP∥BB1,且NP=BB1,所以NP∥MA,且NP=MA,所以四边形AMNP是平行四边形,所以MN∥AP.又MN⊄平面ABC,AP⊂平面ABC,所以MN∥平面ABC.(2)因为AB⊥A1B,所以△ABA1是等腰直角三角形.设AB=a,则AA1=2a,BM=AM=a.又在Rt△ACM中,AC=a,所以MC=a.在△BCM中,CM2+BM2=2a2=BC2,所以MC⊥BM,所以MA1,MB,MC两两垂直,以M为坐标原点,MA1,MB,MC的方向分别为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系,则M(0,0,0),C(0,0,a),B1(2a,a,0),N,所以MC=(0,0,a),MN=.设平面CMN的法向量为n1=(x,y,z),则即取x=1,得y=-2.故平面CMN的一个法向量为n1=(1,-2,0).因为平面ACM的一个法向量为n2=(0,1,0),所以cos〈n1,n2〉==-.因为二面角ACMN为钝角,所以二面角ACMN的余弦值为-.3.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15岁至45岁的人群,按比例随机抽取了300份,进行数据统计,具体情况如下表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45]20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数.②为听取对发展共享单车的建议,调查小组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望.(2)从统计数据可直观得出“经常使用共享单车与年龄达到m岁有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①从300人中抽取60人,其中“年龄达到35岁”的人数为100×=20,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部