第十七章空间向量与立体几何考纲解读考点内容解读要求五年高考统计常考题型预测热度201320142015201620171.空间向量的概念及线线角、线面角求异面直线所成角和线面角B22题10分解答题★★★2.求面面角求二面角B22题10分22题10分解答题★★★分析解读江苏高考近几年考查用空间向量知识来解决立体几何问题的命题方向都是求夹角问题,试题难度不大,只要按照用空间向量处理问题的步骤,一般都容易解决.命题探究在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{,,}为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,∠BAD=120°,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos<,>===-,因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,,2)为平面BA1D的一个法向量,从而cos<,m>===.设二面角B-A1D-A的大小为θ,则|cosθ|=.因为θ∈[0,π],所以sinθ==.因此二面角B-A1D-A的正弦值为.五年高考考点一空间向量的概念及线线角、线面角1.(2015四川,14,5分)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cosθ的最大值为.答案2.(2014广东改编,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是.①(-1,1,0)②(1,-1,0)③(0,-1,1)④(-1,0,1)答案②3.(2017北京理,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)证明:设AC,BD交点为E,连结ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连结OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).所以cos==.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则sinα=|cos|==.所以直线MC与平面BDP所成角的正弦值为.4.(2016课标全国Ⅲ理,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析(1)证明:由已知得AM=AD=2.取BP的中点T,连结AT,TN,由N为PC中点知TN∥BC,TN=BC=2.(3分)又AD∥BC,故TNAM,故四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(6分)(2)取BC的中点E,连结AE.由AB=AC得AE⊥BC,从而AE⊥AD,且AE===.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即(10分)可取n=(0,2,1).于是|cos|==.即直线AN与平面PMN所成角的正弦值为.(12分)5.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m·=0,m·=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos<,m>==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos<,>==.设1...