电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 大题考法专训(四)概率与统计-人教版高三全册数学试题VIP免费

高考数学二轮复习 大题考法专训(四)概率与统计-人教版高三全册数学试题_第1页
1/6
高考数学二轮复习 大题考法专训(四)概率与统计-人教版高三全册数学试题_第2页
2/6
高考数学二轮复习 大题考法专训(四)概率与统计-人教版高三全册数学试题_第3页
3/6
大题考法专训(四)概率与统计A级——中档题保分练1.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解:(1)由已知得0.70=a+0.20+0.15,解得a=0.35,所以b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.2.(2019·天津高考)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B,从而P(X=k)=Ck3-k,k=0,1,2,3.所以随机变量X的分布列为X0123P随机变量X的数学期望E(X)=3×=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B,且M={X=3,Y=1}∪{X=2,Y=0}.由题意知,事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P(X=3)P(Y=1)+P(X=2)P(Y=0)=×+×=.3.某商店为迎接端午节,推出花生粽与肉粽两款粽子.为调查这两款粽子的受欢迎程度,店员连续10天记录了这两款粽子的销售量,用1,2,…,10分别表示第1,2,…,10天,记录结果得到频数分布表如下所示(其中销售量单位:个).12345678910花生粽1039398931068687849199肉粽8897989510198103106102112(1)根据表中数据完成如图所示的茎叶图:(2)根据统计学知识,请判断哪款粽子更受欢迎;(3)求肉粽销售量y关于序号t的线性回归方程,并预估第15天肉粽的销售量.(回归方程的系数精确到0.01)参考数据:(ti-)(yi-)=156.参考公式:回归方程y=a+bt中斜率和截距的最小二乘估计分别为b=,a=-b.解:(1)根据所给数据完成茎叶图如图所示.(2)法一:由(1)中茎叶图可知,肉粽的销售量均值比花生粽高,两款粽子的销售量波动情况相当,所以可以认为肉粽更受欢迎.法二:由题意得花生粽的销售量的均值1=95+×(8-2+3-2+11-9-8-11-4+4)=94,肉粽的销售量的均值2=100+×(-12-3-2-5+1-2+3+6+2+12)=100.因为94<100,所以1<2,即肉粽的销售量的均值较花生粽高,所以可以认为肉粽更受欢迎.(3)由题中数据可得=,(ti-)2=×(92+72+52+32+12)×2=,所以b=≈1.89,a=100-1.891×≈89.60.故肉粽销售量y关于序号t的线性回归方程为y=1.89t+89.60.当t=15时,y=1.89×15+89.60≈118,所以预估第15天肉粽的销售量为118个.B级——拔高题满分练1.(2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 大题考法专训(四)概率与统计-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部