基于ARM的MPEG4视频解码器摘要详细阐述了针对ARM平台的MPEG4视频解码算法的优化方法。实验数据表明,优化后的解码器性能得到了全面提升。还结合ARM7TDMI的EasyARM2200开发平台,给出了嵌入式MPEG-4视频解码的实时实现。关键词ARM,MPEG4,嵌入系统,视频解码器1引言本文旨在研究基于ARM微处理器的MPEG-4视频解码技术,主要应用在手持移动设备中。利用嵌入式系统实现MPEG-4视频解码,处理器的选择是关键。在嵌入式系统中常用的RISC处理器是ARM核,主要是因为它具有体积小,功耗低,成本低,性价比高的特点,这对于移动应用领域非常重要。ARM7系列微处理器为低功耗的32位RISC处理器,最适合于对价位和功耗要求较高的消费类应用。本解码器定位于低分辨率和低帧率的应用场合,因此选择在ARM7TDMI核上实现解码功能。要实现更高帧率和分辨率的解码,可将软件直接应用在更高端的处理器上。2MPEG-4视频解码算法的优化与实现MPEG-4标准可以划分为一套子标准,标准的每一部分都有各自最适合的应用场合。MPEG-4SVP就是一种特殊的、简单的MPEG-4实现,SVP代表SimpleVisualProfile。这部分是专门针对手持式产品中无线视频传输应用场合而制定的。由于本解码器应用在手持移动设备视频解码的场合,因此选用MPEG-4SVP作为解码算法。本文选用ARM7TDMI作为核心处理器进行MPEG-4视频解码器的开发。在实际开发过程中,针对ARM7TDMI的结构和MPEG-4的算法特点,做了大量优化工作,保证了解码的精度,大幅度提高了解码的速度。解码器的具体功能如表1所列。表1基于ARM7TDMI的MPEG-4视频解码器功能表功能系统实现压缩标准MPEG-4SVP输入图像分辨率QCIF(176×144,如果选用更高端处理器,则可支持更高分辨率)解码帧率15fps(如果选用更高端处理器,则可支持更高帧率)VOP类型IVOP+PVOPDC/AC逆预测支持Inter4V模式支持逆量化方法H.263(MPEG可选)逆扫描方式Zigzag扫描+水平交替扫描+垂直交替扫描输出图像4∶2∶0YUV格式2.1解码器算法解码过程实际上就是从视频编码码流中恢复出VOP数据的过程。图1描述了一个视频解码过程。解码器主要包含两部分:运动解码和纹理解码。I帧中只含有纹理信息,因此只须解码纹理信息即可恢复I帧。而P帧中不仅包含纹理信息,还包含运动信息,所以须解码运动信息,获得运动矢量并进行运动补偿。另外,还须进行纹理解码获得残差值,将这两部分组合起来才能重建P帧。图1MPEG4SVP的解码过程解码器的实现主要是提供一个简单的接口函数,供解码时调用。该接口函数根据解码的不同需要和不同阶段提供了5个入口。5个接口函数中:4个供初始化、预处理及后续处理时调用;剩余1个是帧解码的实现函数。图2为帧解码主程序的流程图。图2帧解码主程序的流程图。解码过程的计算主要集中在如下几个模块:IDCT、运动补偿MC、逆量化、逆扫描、逆预测以及变长解码VLD。表2给出了优化前解码过程的特征信息。从表2中可以看出,上述运算模块在解码过程中占有很大比例。对以上各模块进行优化的效果将直接反映在解码器的实时效率上。表2优化前解码过程的特征信息各单元名称各单元所占时间比例/%IDCT40逆量化,逆扫描和逆预测24数据分析和变长解码142.2ARM平台下算法的优化ARM结构是基于RISC原理的,指令集和相关的解码机制都比CISC要简单得多。它能高效地输出指令,快速送出实时中断响应;它还进行了管道设置,处理和存储系统的所有部分可以持续地运转。在典型的情况下,当一条指令被执行时,其后续指令正在被解码;而第三条指令便从存储器中取出。ARM7TDMI并不具有指令或数据的高速缓存,主要被用于控制核心,而非数据处理。但通过对其特性的灵活运用,可以使其非常容易地应用于视频解码过程。对MPEG4视频解码器的算法优化主要从以下几方面入手:(1)算法的优化这里是指高级C语言转化算法以简化计算量,用最佳算法实现解码中的各模块。①IDCT算法的选择IDCT运行次数多,运算量很大,其变换的快慢直接影响解码的速度。本文采用一种称为AAN的快速算法。其一维8点的DCT变换通过16点DFT来实现,而16点DFT又可通过FFT实现;二维8×8的DCT运算仅需80次乘法和464次加法操作,大大减小了这部分的运算量。用AAN算法实现IDCT运...