1/8数列求和测试题A级基础题1.数列{1+2n-1}的前n项和Sn=________.2.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+⋯+a10=________.3.数列112,314,518,7116,⋯的前n项和Sn=________.4.已知数列{an}的通项公式是an=1n+n+1,若前n项和为10,则项数n=________.5.数列{an},{bn}都是等差数列,a1=5,b1=7,且a20+b20=60.则{an+bn}的前20项的和为________.6.等比数列{an}的前n项和Sn=2n-1,则a21+a22+⋯+a2n=________.7.已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列1bnbn+1的前n项和Sn=________.二、解答题(每小题15分,共45分)8.已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.9.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.2/810.已知首项不为零的数列{an}的前n项和为Sn,若对任意的r,t∈N*,都有SrSt=rt2.(1)判断{an}是否是等差数列,并证明你的结论;(2)若a1=1,b1=1,数列{bn}的第n项是数列{an}的第bn-1项(n≥2),求bn;(3)求和Tn=a1b1+a2b2+⋯+anbn.B级创新题1.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为________.2.若数列{an}为等比数列,且a1=1,q=2,则Tn=1a1a2+1a2a3+⋯+1anan+1的结果可化为________.3.数列1,11+2,11+2+3,⋯的前n项和Sn=________.4.在等比数列{an}中,a1=12,a4=-4,则公比q=________;|a1|+|a2|+⋯+|an|=________.5.已知Sn是等差数列{an}的前n项和,且S11=35+S6,则S17的值为________.6.等差数列{an}的公差不为零,a4=7,a1,a2,a5成等比数列,数列{Tn}满足条件Tn=a2+a4+a8+⋯+a2n,则Tn=________.7.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求{an},{bn}的通项公式;(2)求数列anbn的前n项和Sn.3/88.在各项均为正数的等比数列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn=log3an,求数列{anbn}的前n项和Sn.参考答案A组1.解析Sn=n+1-2n1-2=n+2n-1.答案n+2n-12.解析设bn=3n-2,则数列{bn}是以1为首项,3为公差的等差数列,所以a1+a2+⋯+a9+a10=(-b1)+b2+⋯+(-b9)+b10=(b2-b1)+(b4-b3)+⋯+(b10-b9)=5×3=15.答案153.解析由题意知已知数列的通项为an=2n-1+12n,则Sn=n1+2n-12+121-12n1-12=n2+1-12n.答案n2+1-12n4.解析 an=1n+n+1=n+1-n,∴Sn=a1+a2+⋯+an=(2-1)+(3-2)+⋯+(n+1-n)=n+1-1.令n+1-1=10,得n=120.答案1204/85.解析由题意知{an+bn}也为等差数列,所以{an+bn}的前20项和为:S20=20a1+b1+a20+b202=20×5+7+602=720.答案7206.解析当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,又 a1=1适合上式.∴an=2n-1,∴a2n=4n-1.∴数列{a2n}是以a21=1为首项,以4为公比的等比数列.∴a21+a22+⋯+a2n=1·1-4n1-4=13(4n-1).答案13(4n-1)7.解析设等比数列{an}的公比为q,则a4a1=q3=27,解得q=3.所以an=a1qn-1=3×3n-1=3n,故bn=log3an=n,所以1bnbn+1=1nn+1=1n-1n+1.则数列1bnbn+1的前n项和为1-12+12-13+⋯+1n-1n+1=1-1n+1=nn+1.答案nn+18.解(1)设等差数列{an}的公差为d.因为a3=-6,a6=0,所以a1+2d=-6,a1+5d=0.解得a1=-10,d=2.所以an=-10+(n-1)·2=2n-12.(2)设等比数列{bn}的公比为q.因为b2=a1+a2+a3=-24,b1=-8,5/8所以-8q=-24,即q=3.所以{bn}的前n项和公式为Sn=b11-qn1-q=4(1-3n).9.解(1)设q为等比数列{an}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{an}的通项为an=2·2n-1=2n(n∈N*)(2)Sn=21-2n1-2+n×1+nn-12×2=2n+1+n2-2.10.解(...