电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学新课程创新教学设计案例--三角形边和角关系的探索VIP免费

高中数学新课程创新教学设计案例--三角形边和角关系的探索_第1页
1/9
高中数学新课程创新教学设计案例--三角形边和角关系的探索_第2页
2/9
高中数学新课程创新教学设计案例--三角形边和角关系的探索_第3页
3/9
第1页共9页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共9页43三角形边和角关系的探索教材分析初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.任务分析这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.教学目标1.理解正、余弦定理的推证方法,并掌握两个定理.2.能运用正、余弦定理解斜三角形.3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.教学设计一、问题情景1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?第2页共9页第1页共9页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共9页2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?二、建立模型1.教师引导学生分析讨论在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.由此可得AC·sinC=AB·sinB.又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.教师明晰:(1)当△ABC为直角三角形时,由正弦函数的定义,得第3页共9页第2页共9页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共9页(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)事实上,当∠A为钝角时,由(2)易知.设BC边上的高为CD,则由三角函数的定义,得CD=asinB=bsin(180°-A).根据诱导公式,知sin(180°-A)=sinA,∴asinB=bsinA,即.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即.第4页共9页第3页共9页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第4页共9页正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.思考:正弦定理可以解决有关三角形的哪些问题?2.组织学生讨论问题情景(2)这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长.组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学新课程创新教学设计案例--三角形边和角关系的探索

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部