11.3.2多边形的内角和通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.阅读教材P21~23,完成预习内容.问题1:你知道三角形的内角和是多少度吗?解:三角形的内角和等于180°.问题2:你知道任意一个四边形的内角和是多少度吗?学生展示探究成果方法1:分成2个三角形180°×2=360°方法2:分割成4个三角形180°×4-360°=360°方法3:分割成3个三角形180°×3-180°=360°从一个顶点出发和各顶点相连,把四边形的问题转化为三角形的问题.问题3:你知道五边形的内角和是多少度吗?问题4:你知道六边形、七边形的内角和分别是多少度吗?知识探究列表探索n边形的内角和公式:____________.自学反馈1.十二边形的内角和是________.2.一个多边形当边数增加1时,它的内角和增加________.3.一个多边形的内角和是720°,则此多边形共有________个内角.4.如果一个多边形的内角和是1440°,那么这是________边形.活动1小组讨论问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?求六边形外角和等于多少度,用六个平角减去六边形的内角和即可得出.问题2:n边形外角和等于多少度?探索发现:n边形外角和等于360°.活动2跟踪训练1.(1)八边形的内角和等于________度;(2)九边形的内角和等于________度;(3)十边形的内角和等于________度.2.一个多边形的内角和等于1800°,这个多边形是________边形.3.七边形的外角和为________.4.正多边形的一个外角等于20°,则这个正多边形的边数是________.5.内角和与外角和相等的多边形是________边形.活动3课堂小结通过三角形向四边形、五边形…的转化,体会转化思想在几何中的运用,体会从特殊到一般的认识问题的方法.【预习导学】知识探究(n-2)×180°自学反馈1.1800°2.180°3.六4.十【合作探究】活动2跟踪训练1.(1)1080(2)1260(3)14402.十二3.360°4.185.四