2.3.2运用公式法(二)教案知识与技能目标:1.使学生会用完全平方公式分解因式。2.使学生学习多步骤,多方法的分解因式。过程与方法目标:1.在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力。情感态度与价值观目标:1.通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.教学重点让学生掌握多步骤、多方法分解因式方法.教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程Ⅰ.创设问题情境,引入新课因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2,而且还学习了完全平方公式(a±b)2=a2±2ab+b2。本节课,我们就要学习用完全平方公式分解因式.Ⅱ.讲授新课1.推导用完全平方公式分解因式的公式以及公式的特点.由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.什么样的多项式才可以用这个公式分解因式呢?互相交流,找出这个多项式的特点.左边的特点有:(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.练一练:下列各式是不是完全平方式?(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.2.例题讲解例1把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式.如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式.Ⅲ.课堂练习a.随堂练习b.补充练习把下列各式分解因式:(1)4a2-4ab+b2;(2)a2b2+8abc+16c2;(3)(x+y)2+6(x+y)+9;(4)4(2a+b)2-12(2a+b)+9;(5)-+n2;(6)x2y-x4-。Ⅳ.课时小结这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.Ⅴ.课后作业写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式.见作业本VI板书设计§2.3.2运用公式法(二)一、1.推导用完全平方公式分解因式的公式以及公式的特点2.例题讲解(例1、例2)二、课堂练习a.随堂练习b.补充练习