电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

八年级数学上第一章平行线1.2平行线的判定(2)教案浙教版VIP免费

八年级数学上第一章平行线1.2平行线的判定(2)教案浙教版_第1页
1/3
八年级数学上第一章平行线1.2平行线的判定(2)教案浙教版_第2页
2/3
八年级数学上第一章平行线1.2平行线的判定(2)教案浙教版_第3页
3/3
浙教版八年级上第一章平行线1.2平行线的判定(2)〖教学目标〗◆1、使学生掌握平行线的第二、三个判定方法.◆2、能运用所学过的平行线的判定方法,进行简单的推理和计算.◆3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法.〖教学重点与难点〗◆教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用.◆教学难点:问题的思考和推理过程是难点.〖教学过程〗一、从学生原有认知结构提出问题如图,问平行的条件是什么?在学生回答的基础上再问:三线八角分为三类角,当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.(板书课题)学生会跃跃欲试,动脑思考.教师引导学生:将内错角或同旁内角设法转化为利用同位角相等.二、运用特殊和一般的关系,发现新的判定方法1.通过合作学习,提出猜想.①若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?你可以从以下几个方面考虑:⑴我们已经有怎样的判定两直线平行的方法?⑵有∠3=∠4,能得出有一对同位角相等吗?由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二:两条直线被第三条直线所截,如果内错角相等,则两条直线平行.教师并强调几何语言的表述方法∵∠3=∠4EF4ABCD132123EFGABCD132H∴AB∥CD(内错角相等,两条直线平行)然后,完成“做一做”∠1=121°,∠2=120°,∠3=120°。说出其中的平行线,并说明理由。②若图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行吗?你可以由类似的方法得到正确的结论吗?由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三:两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行.教师并强调几何语言的表述方法∵∠2+∠4=180°∴AB∥CD(同旁内角互补,两条直线平行)当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行.2.例题教学,体验新知例2.如图,∠C+∠A=∠AEC。判断AB与CD是否平行,并说明理由。分析:延长CE,交AB于点F,则直线CD,AB被直线CF所截。这样,我们可以通过判断内错角∠C和∠AFC是否相等,来判定AB与CD是否平行。板书解答过程。提问:能否用不一样的方法来判定AB与CD是否平行?提示:连结AC。例3如图∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC.请说明理由。EF4ABCD132ACDBEACDBEFDABC先让学生思考,以小组为单位进行讨论,然后派出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程三、应用举例,变式练习(讲与练结合方式进行教学)1、课内练习1、22、如图⑴∠1=∠A,则GC∥AB,依据是;⑵∠3=∠B,则EF∥AB,依据是;⑶∠2+∠A=180°,则DC∥AB,依据是;⑷∠1=∠4,则GC∥EF,依据是;⑸∠C+∠B=180°,则GC∥AB,依据是;⑹∠4=∠A,则EF∥AB,依据是;3、探究活动:有一条纸带如图所示,如果工具只有圆规,怎样检验纸带的两条边沿是否平行?如果没有工具呢?请说出你的方法和依据。提示:可尝试用折叠的方法,与你的同伴交流。四、小结1.先由教师问学生:到目前为止学习了哪些判定两直线平行的方法?在选择方法时应注意什么问题?2.在学生回答的基础上,教师总结指出:(1)学习了3种判定方法.(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法.(3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择.五、作业选用课本题ABFEGDC1234

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

八年级数学上第一章平行线1.2平行线的判定(2)教案浙教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部