18.2函数的图象18.2.1《平面直角坐标系》教学设计教学内容:华师大版《数学·八年级下册》§18.2《函数的图象》教材分析:“平面直角坐标系”是研究函数性质的重要工具,是学习函数及其图象、曲线和方程的基础,是沟通数与形的桥梁.这节课是在学习了数轴与有关几何知识的基础上,进行函数图像教学的第一节课,万事开头难,学生在学好平面直角坐标系的概念,探究出特殊点的坐标特征,为以后学习函数图像打下基础.教学目标:知识与技能1、理解平面直角坐标系的有关概念,并会正确画出平面直角坐标系.2、能根据点的位置确定点的坐标,能根据点的坐标描点.过程与方法联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;通过学生积极动手画图,达到训练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.情感态度与价值观培养学生细致、认真的学习习惯.通过介绍笛卡儿创立直角坐标系的背景知识,激励学生敢于探索,勇攀科学高峰.教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点.2、教学难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用.教学方法:1、加强与学生已有知识的联系.2、创设丰富的现实情境,重视学生直观感知的作用.3、重视学生对必要的数学语言和符号的理解与准确应用.4、给学生充分的自主探索时间.教学准备:多媒体、三角板教学过程:一、创设情境课件出示一排队伍,问:要表示某个队员的位置,应该怎么说?需要用多少个数来表示?这与数轴上的点和实数有什么样的联系?再出示几排队伍,问:要表示某个队员的位置,应该怎么说?需要用多少个数来表示?学生回答,教师总结:一排队伍要表示某个队员的位置用一个数来表示,这与一条数轴上要表示某个点的位置是相似的.几排队伍里要表示某个队员的位置需要用两个数来表示,我们把这两个数称一对有序实数.(设计意图:从学生熟识的生活实际出发,创设情境,激发学生学习兴趣,让学生具体感知从一维到二维的发展.)再举出几个生活中需要两个数来确定位置的例子,如:电影院的座位,教室的座位,门牌号,象棋、围棋的棋谱等.(设计意图:举一些生活中的实例,丰富学生的感性认识.)上面的例子,我们都可以归结为如何用两个实数来确定平面上的点的位置问题.那么数学上是怎样解决这个问题呢?早在1637年以前,法国数学家笛卡儿受到了经、纬线的启发,建立了“笛卡儿直角坐标系”,这就是今天我们要研究平面直角坐标系.(设计意图:通过介绍笛卡儿创立直角坐标系的背景知识,激励学生敢于探索,勇攀科学高峰.)二、探索活动(一).平面直角坐标系有关概念1、我们已经知道,数轴上的点与实数是一一对应的.数轴上给定一个点就能找到它对应的一个实数,这个实数叫做这个点在数轴上的坐标,反过来,给定一个实数,就能在数轴上找到它所对应的一个点.大家想一想,一个实数我们可以用一条数轴上的一点来表示,那么,以上我们举的这些例子需要两个数来确定,你觉得应该用几条数轴来表示?笛卡儿的方法是在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面直角坐标系.其中水平的数轴叫X轴(或横轴)取向右为正方向,铅直的数轴叫Y轴(或纵轴),取向上为正方向,两条数轴的交点O叫做坐标原点.(设计意图:由数轴上的点与实数的关系引入平面内的点的表示方法.通过旧知识引入新知识,承上启下.)练习1:你能参照定义画一个平面直角坐标系吗?(设计意图:让学生通过画平面直角坐标系,来进一步理解、掌握概念.充分体现教师为主导,学生为主体的教学理念.同时激励学生继续深入探究.)教师启发学生联想已经学过的统计图知识,发现它们实际上已经具备了直角坐标系的所有要素.(设计意图:加强与学生已有知识的联系,让学生产生亲近感,认同新概念并纳入自己的知识范围.)2、任取平面内一点,我们都可以用一对有序实数来描述它的位置.如点P,从P点分别向x轴与y轴作垂线,垂足分别为M、N,点M、N在x轴与y轴上所的对应的数,就是点P的横坐标与纵坐标,由此得出的有序实数对就是点P的坐标P(3,2).在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、...