电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

北师版九年级数学上册直角三角形(3)VIP免费

北师版九年级数学上册直角三角形(3)_第1页
1/4
北师版九年级数学上册直角三角形(3)_第2页
2/4
北师版九年级数学上册直角三角形(3)_第3页
3/4
直角三角形教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。教学过程:引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。定理:直角三角形两条直角边的平方和等于斜边的平方。如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。∴四边形ACDE是直角梯形。∴S梯形ACDE=(a+b)(a-b)=(a+b)2∴∠ABE=180°-∠ABC-∠EBD=180°-90°=90°AB=BE∴S△ABC=c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴(a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+ab∴a2+b2=c2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则A’B’2+A’C’2=B’C’2(勾股定理)∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,∴BC2=B’C’2∴BC=B’C’∴△ABC≌△A’B’C’(SSS)∴∠A=∠A’=90°(全等三角形的对应角相等)因此,△ABC是直角三角形。定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。练习题:随堂作业作业:P20:1、2、3(第二课时)教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。教学过程:复习:1、勾股定理即其逆定理。2、全等三角形的证明。新授:引入:两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一边所对的角是直角呢?定理:斜边和一条直角边对应相等的两个直角三角形全等。这一定理可以简单地用“斜边、直角边”或“HL”表示。已知:如图,△ABC和△A’B’C’中∠C=∠C’=90°,且AB=A’B’,BC=B’C’,求证:△ABC≌△A’B’C’证明:Rt△ABC和Rt△A’B’C’中,∵AB=A’B’,BC=B’C’,AC2=BC2-AB2,A’C’2=B’C’2-A’B’2∵AC2=A’C’2∴AC=A’C’∴△ABC≌A’B’C’(SSS)做一做:用三角尺可以作角平线,如图,在已知∠AOB的两边上分别取点M、N,使OM=ON,再过点M作OA的垂线,过点N作OB的垂线,两垂线交于点P,那么射线OP就是∠AOB的平分线请证明:证明:∵MC=NCPC=PC∴Rt△MCP≌Rt△NCP(HL)∴∠MCP=∠NCP(全等三角形对应角相等)议一议:如图,已知∠ACB=BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来。随堂练习判断下列命题的真假,并说明理由。(1)两个锐角对应相等的两个直角三角形全等。(2)斜边及一锐角对应相等的两个直角三角形全等。(3)两条直角边对应相等的两个直角三角形全等。(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等。作业:P231、2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

北师版九年级数学上册直角三角形(3)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部