电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料VIP免费

2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料_第1页
1/5
2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料_第2页
2/5
2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料_第3页
3/5
2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料知识考点:掌握一元二次方程根与系数的关系,并会根据条件和根与系数的关系不解方程确定相关的方程和未知的系数值。精典例题:【例1】关于的方程的一个根是-2,则方程的另一根是;=。分析:设另一根为,由根与系数的关系可建立关于和的方程组,解之即得。答案:,-1【例2】、是方程的两个根,不解方程,求下列代数式的值:(1)(2)(3)略解:(1)==(2)==(3)原式===【例3】已知关于的方程有两个实数根,并且这两个根的平方和比这两个根的积大16,求的值。分析:有实数根,则△≥0,且,联立解得的值。略解:依题意有:由①②③解得:或,又由④可知≥∴舍去,故探究与创新:【问题一】已知、是关于的一元二次方程的两个非零实数根,问:与能否同号?若能同号请求出相应的的取值范围;若不能同号,请说明理由。略解:由≥0得≤。,≥0∴与可能同号,分两种情况讨论:(1)若>0,>0,则,解得<1且≠0∴≤且≠0(2)若<0,<0,则,解得>1与≤相矛盾综上所述:当≤且≠0时,方程的两根同号。【问题二】已知、是一元二次方程的两个实数根。(1)是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由。(2)求使的值为整数的实数的整数值。略解:(1)由≠0和△≥0<0∵,∴∴,而<0∴不存在。(2)==,要使的值为整数,而为整数,只能取±1、±2、±4,又<0∴存在整数的值为-2、-3、-5跟踪训练:一、填空题:1、设、是方程的两根,则①=;②=;③=。2、以方程的两根的倒数为根的一元二次方程是。3、已知方程的两实根差的平方为144,则=。4、已知方程的一个根是1,则它的另一个根是,的值是。5、反比例函数的图象经过点P(、),其中、是一元二次方程的两根,那么点P的坐标是。6、已知、是方程的两根,则的值为。二、选择题:1、假如方程的两个实根互为相反数,那么的值为()A、0B、-1C、1D、±12、已知≠0,方程的系数满足,则方程的两根之比为()A、0∶1B、1∶1C、1∶2D、2∶33、已知两圆的半径恰为方程的两根,圆心距为,则这两个圆的外公切线有()A、0条B、1条C、2条D、3条4、已知,在△ABC中,∠C=900,斜边长,两直角边的长分别是关于的方程:的两个根,则△ABC的内切圆面积是()A、B、C、D、5、菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于的方程:的根,则的值为()A、-3B、5C、5或-3D、-5或3三、解答题:1、证明:方程无整数根。2、已知关于的方程的两个实数根的倒数和等于3,关于的方程有实根,且为正整数,求代数式的值。3、已知关于的方程……①有两个不相等的实数根,且关于的方程……②没有实数根,问:取什么整数时,方程①有整数解?4、已知关于的方程(1)当取何值时,方程有两个不相等的实数根?(2)设、是方程的两根,且,求的值。5、已知关于的方程只有整数根,且关于的一元二次方程的两个实数根为、。(1)当为整数时,确定的值。(2)在(1)的条件下,若=2,求的值。6、已知、是关于的一元二次方程的两个非零实根,问:、能否同号?若能同号,请求出相应的取值范围;若不能同号,请说明理由。2-5一元二次方程根与系数的关系一、填空题:1、①2;②;③7;2、;3、±18;4、2,2;5、(-2,-2)6、43;二、选择题:ABCDA三、解答题:1、略证:假设原方程有整数根,由可得、均为整数根,∵∴、均为奇数但应为偶数,这与相矛盾。2、,3、4、(1);(2)5、(1)=0,-1;(2)当=0时,;当时,6、能同号,≤且≠0本资料来源于《七彩教育网》http://www.7caiedu.cn

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024-2024年中考综合复习-10一元二次方程根与系数的关系教学资料

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部