生物质预处理制成型燃料研究进展摘要:生物质能具有CO2零排放、普遍易得、价格低廉等优势。生物质成型处理有利于其远距离运输与长时间储存。但是,生物质细胞壁高分子聚合物形成了物理和化学抗降解屏障,严重阻碍了生物质成型燃料品质的提高,因此,采用预处理技术是实现生物质能源高效利用的必要手段。目前,生物质预处理技术主要分为物理法、物理-化学法、化学法和生物法四大类。由于各种预处理技术对生物质化学组分占比以及结构的影响不同,预处理后的生物质成型燃料所体现出的物理性质和燃烧特性各有特点。本文介绍了生物质原料中的纤维素、半纤维素以及木质素等主要化学成分的结构特点及其对成型过程的影响,并从提升生物质成型燃料的物理性质和燃烧特性角度总结了蒸汽爆破预处理、低温热解预处理及水热预处理3种预处理技术的研究进展。总体而言,水热预处理技术使处理后生物质成型燃料在燃烧热值、能量密度、耐久度以及机械强度等各方面性能得以全面提升,但是水热预处理成本较高且对环境有影响。未来生物质成型燃料预处理技术的研究方向应从平衡生物质燃料品质与预处理成本之间的关系、减少污染物排放、预处理过程流程配置差异性集成和精确工艺参数匹配等方面为基础,开发适于规模化灵活生产的节能高效生物质预处理技术。上海理工大学碳基燃料洁净转化实验室利用水热预处理技术制备高机械强度生物质成型燃料及成型炭燃料,并获得过程副产物———木醋液,开发了多产品、环境友好的生物质综合利用技术。0引言生物质资源能量密度低,存在运输、储存困难以及能源利用率低等问题,严重制约了生物质资源的规模化应用[1-2]。生物质固化成型技术可将形状不规则、松散的生物质压缩为形状规则、高密度的成型燃料,使生物质从低品位能源上升为中上等品位能源[3-5]。生物质成型燃料热效率高、燃烧性能好,是替代煤炭的理想燃料,广泛用于农村家庭炊事、取暖用能[6]。随着燃烧设备的不断改进和完善,生物质成型燃料耦合燃煤发电、供热项目在解决能源危机和环境污染等方面发挥了重要作用,具有良好的发展前景[7-8]。据欧盟委员会预计,2020年生物质成型燃料的市场规模可达4000万~5000万t(比2012年增长300%),所生产的热量和电力总量占可再生能源供能的45%[9]。然而,由于生物质细胞壁中的三大组分(纤维素、半纤维素和木质素)紧密交联在一起,从而形成了物理和化学抗降解屏障,导致生物质成型燃料的机械强度和能量密度偏低,严重阻碍了生物质成型燃料品质的进一步提升[10]。因此,采用合适的预处理技术至关重要。目前,许多国内外学者研究了原料水分、粒径、压力及温度等成型参数对生物质成型燃料品质的影响,得到了生物质成型燃料的最佳工艺参数[11-15],但有关原料化学成分对生物质燃料成型过程的影响作用机制研究较少。本文旨在总结前人在生物质原料主要化学成分(纤维素、半纤维素以及木质素等)对成型过程的影响研究,结合国内外关于生物质成型燃料预处理技术的发展状况,从提升生物质成型燃料的物理性质和燃烧特性的角度探讨生物质燃料压缩成型的内在机理,为高品质生物质成型燃料的开发提供理论基础与技术指导。1成型过程及黏结机制生物质的主要形态是不同粒径的粒子,且粒子排列通常较疏松,粒子间空隙较大,导致生物质燃料的密度偏小,故常采用压缩成型技术提高生物质燃料的密度。生物质燃料的压缩成型过程,即在一定条件下生物质颗粒之间发生塑变而相互啮合,伴随生物质中有机物软化胶合的过程[16]。生物质燃料的压缩成型过程经历以下4个阶段[17]:①松散阶段。此时压力较小,物料在压力作用下缓慢挤紧,颗粒间空气和水分被挤出,此阶段主要是缩小颗粒间隙的压缩过程,增加较小的压力即可获得较大的压缩变形[18]。②过渡阶段。在压力作用下,大颗粒发生破裂,填补周围的空隙[19]。③压实阶段。颗粒间空隙基本被克服,在垂直于主应力的方向上发生塑性形变,相邻颗粒靠啮合的方式接触,使颗粒结合更加牢固[20-21]。④推移阶段。物料与压块同步向出料口移动,可近似认为物料相对压块静止,此阶段压力逐渐释放,为典型的压力松弛过程[22]。压缩过程取决于生物质原料的物理性质和化学...