第2课时因式分解法、直接开平方法(一)教学目标1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。3、引导学生体会“降次”化归的思路。重点难点重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。教学过程(一)复习引入1、判断下列说法是否正确(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),若(x+3)(x-6)=0,则x+3=0或x-6=0();(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),若(x+3)(x-6)=1,则x+3=或x-6=2()。答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;若x2=2,则x=。答案:平方根,±,±2,±。(二)创设情境前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。给出1.1节问题一中的方程:(35-2x)2-900=0。问:怎样将这个方程“降次”为一元一次方程?(三)探究新知让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。(四)讲解例题展示课本P.7例1,例2。按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。(五)应用新知课本P.8,练习。(六)课堂小结1、解一元二次方程的基本思路是什么?2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?(七)思考与拓展不解方程,你能说出下列方程根的情况吗?(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根通过解答这个问题,使学生明确一元二次方程的解有三种情况。布置作业课本习题,1.2中A组第1题.教学后记: