人教版初中数学圆的经典测试题附答案解析一、选择题1.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.25cmB.45cmC.25cm或45cmD.23cm或43cm【答案】C【解析】连接AC,AO, O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C点位置如图1所示时, OA=5cm,AM=4cm,CD⊥AB,∴OM=222254OAAM=3cm,∴CM=OC+OM=5+3=8cm,∴AC=22224845AMCMcm;当C点位置如图2所示时,同理可得OM=3cm, OC=5cm,∴MC=5-3=2cm,在Rt△AMC中,AC=22224225AMCMcm.故选C.2.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD的值.【详解】 AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=22,BD=1,则sin∠ABD的值是()A.22B.13C.223D.3【答案】C【解析】【分析】先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD【详解】解: 弦CD⊥AB,AB过O,∴AB平分CD,∴BC=BD,∴∠ABC=∠ABD, BD=1,∴BC=1, AB为⊙O的直径,∴∠ACB=90°,由勾股定理得:AB=22222213ACBC,∴sin∠ABD=sin∠ABC=223ACAB故选:C.【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解4.用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与Oe相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.260cmB.260013cmC.272013cmD.272cm【答案】C【解析】【分析】连接OB,如图,利用切线的性质得OBAB,在RtAOB中利用勾股定理得12AB,利用面积法求得6013BH,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【详解】解:连接OB,作BHOA于H,如图,Q圆锥的母线AB与Oe相切于点B,OBAB,在RtAOB中,18513OA,5OB,2213512AB,Q1122OABHOBABgg,512601313BH,Q圆锥形纸帽的底面圆的半径为6013BH,母线长为12,形纸帽的表面2160720212()21313cm.故选:C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.5.如图,在矩形ABCD中,6,4ABBC,以A为圆心,AD长为半径画弧交AB于点E,以C为圆心,CD长为半径画弧交CB的延长线于点F,则图中阴影部分的面积是()A.13B.1324C.1324D.524【答案】C【解析】【分析】先分别求出扇形FCD和扇形EAD的面积以及矩形ABCD的面积,再根据阴影面积=扇形FCD的面积﹣(矩形ABCD的面积﹣扇形EAD的面积)即可得解.【详解】解: S扇形FCD29036096,S扇形EAD24036094,S矩形ABCD6424,∴S阴影=S扇形FCD﹣(S矩形ABCD﹣S扇形EAD)=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C.【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD的面积﹣(矩形ABCD的面积﹣扇形EAD的面积)是解答本题的关键.6.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°, FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°, EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【...