29.1.1用推理方法研究三角形教学目标知识技能目标1.掌握并会证明等腰三角形的判定定理和性质定理;2.利用等腰三角形的有关定理去研究几何问题.过程性目标在证明等腰三角形的有关定理的过程中,进一步体会证明的必要性,掌握证明的书写格式,提高演绎推理能力.教学重点1.掌握并会证明等腰三角形的判定定理和性质定理;2.利用等腰三角形的有关定理去研究几何问题.教学难点在证明等腰三角形的有关定理的过程中,进一步体会证明的必要性,掌握证明的书写格式,提高演绎推理能力.一、情境导入请同学们按以下步骤画△ABC.1.任意画线段BC;2.以B、C为顶点,在BC的同侧作锐角∠B=∠C,角的两边交于点A.这个△ABC是一个什么三角形?怎么知道△ABC是一个等腰三角形呢?大家可以用度量或沿AD对折的方法,得到AB=AC,这实际上就是我们已经学过的等腰三角形的识别方法:等角对等边.同学们是否想过,为什么当△ABC沿AD对折时,AB与AC完全重合?现在我们可以用逻辑推理的方法去证明这个问题.二、探究归纳1.求证:如果一个三角形有两个角相等,那么这两个角所对的边也相等.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.分析要证明AB=AC,可设法构造两个全等三角形,使AB,AC分别是这两个全等三角形的对应边,因此可画∠BAC的平分线AD.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”说明(1)还可通过画中线AD或BC边上的高AD得全等三角形.(2)推理形式:因为在△ABC中,∠B=∠C.(已知)所以AB=AC.(等角对等边)2.同学们回忆一下,我们学过的等腰三角形具有哪些性质?(1)等边对等角;(2)等腰三角形的“三线合一”.以前,我们也用折叠的方法(可演示一下)来认识了这两个性质,现在同学们尝试用逻辑推理的方法来证明等腰三角形的性质.先试着画出图形,写出已知,求证.求证:等腰三角形的两个底角相等.已知:△ABC中,AB=AC.求证:∠B=∠C.分析仍可通过画∠BAC的平分线AD来构造全等三角形.等腰三角形的性质定理:等腰三角形的两个底角相等.(简称为“等边对等角”)推理形式:因为△ABC中,AB=AC.(已知)所以∠B=∠C.(等边对等角)说明(1)也可作中线AD或BC边上的高线AD;(2)由△BAD≌△CAD,可进一步推得BD=CD,∠BDA=∠CDA=90°,因此AD也是中线,是BC边上的高线.等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合.(简写成“等腰三角形的三线合一”)在半透明纸上画∠AOB及角平分线OC,点P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为点D和点E.沿着射线OC对折,发现PD和PE完全重合,即PD=PE,由此,我们得到了角平分线的性质.请同学们来叙述这一性质:角平分线上的点到这个角两边的距离相等.我们现在可以用逻辑推理的方法去证明这一性质.1.同学们按上述性质画出图形,写出已知、求证,老师及时补充.已知:OC是∠AOB平分线,点P是OC上任意一点,PD⊥OA,PE⊥OB,点D、E为垂足.求证:PD=PE.分析只要去证明PD、PE所在的两个直角三角形全等。角平分线性质定理:角平分线上的点到这个角两边的距离相等.2.反过来,如果一个点到一个角两边的距离相等,这个点是否就在这个角的平分线上呢?画出图形,我们通过证明来解答这个问题.已知:如图,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.求证:点Q在∠AOB的平分线上.分析要证点Q在∠AOB的平分线上,即QO是∠AOB的平分线,画射线OQ,只要证∠AOQ=∠BOQ,利用H.L.证明△DOQ≌△EOQ,得∠AOQ=∠BOQ.角平分线判定定理:到一个角两边距离相等的点在这个角的平分线上.前面我们已经用逻辑推理的方法证明了很多定理,如等腰三角形的性质与判定定理、角平分线的性质与判定定理、线段的垂直平分线的性质与判定定理等,这些定理都是命题.再如:“两直线平行,内错角相等”;“内错角相等,两直线平行”也是命题.观察这些命题的题设与结论,你发现了什么?1.命题“两直线平行,内错角相等”的题设是_______,结论是_______;命题“内错角相等,两直线平行”的题设是_______,结论是_______.在两个命题中,如果第一个命题的题设是...