《26.1二次函数》教学设计讲课教师:学科:课时:总课时数:72教学目标知识与技能使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。过程与方法会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。情感态度与价值观让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。教材分析教学重点确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质是教学的重点。教学难点正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是教学的难点。教学过程教师活动学生活动备注(教学目的、时间分配等)一、设疑启发1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?(函数y=2x2+1的图象可以看成是将函数y=2x2的图象学生回答(函数y=2(x-1)2的图象向上平移一个单位得到的)2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?二、探疑互动你能填写下表吗?y=2x2向右平移的图象1个单位y=2(x-1)2向上平移1个单位y=2(x-1)2+1的图象开口方向向上对称轴y轴顶点(0,0)问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?问题3:你能发现函数y=2(x-1)2+1有哪些性质?函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)共同找规律对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;1.在学生画函数图象时,教师巡视指导;2.对“比较”两字问题4:在图26.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?练习1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?2.谈谈你的学习体会。1.巳知函数y=-x2、y=-x2-1和y=-(x+1)2-1(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线y=-x2得到抛物线y=-x2-1和抛物线y=(x+1)2-1;(4)试讨论函数y=-(x+1)2-1的性质。2.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;(4)试讨沦函数y=6(x+3)2-3的性质;做出解释,然后让学生进行比较(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?练习二P13练习1、2、3、4。对于练习第4题,教师必须提示:将-3x2-6x+8配方,化为练习第3题中的形式,即y=-3x2-6x+8=-3(x2+2x)+8=-3(x2+2x+1-1)+8=-3(x+1)2+11作业:教师活动学生活动备注(教学目的、时间分配等)板书二次函数性质例题练习