电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

九年级数学等腰三角形教案北师大版VIP免费

九年级数学等腰三角形教案北师大版_第1页
1/4
九年级数学等腰三角形教案北师大版_第2页
2/4
九年级数学等腰三角形教案北师大版_第3页
3/4
第20课等腰三角形〖知识点〗等腰三角形、等腰三角形的性质和判定、等边三角形、等边三角形的性质和判定、轴对称、轴对称图形〖大纲要求〗1.理解等腰三角形的概念,掌握等腰三角形的两底角相等、等腰三角形三线合一等性质,掌握两个角相等的三角形是等腰三角形等判定定理,并能运用它们进行简单的证明和计算;2.理解等边三角形的概念,掌握等边三角形的各角都是60°等性质,掌握三个角都相等的三角形或一个角是60°的等腰三角形都是等边三角形等判定,能运用它们进行简单的证明和计算;3.了解轴对称及轴对称图形的概念,会判断轴对称图形。〖考查重点与常见题型〗等腰三角形和等边三角形的性质和判定的应用,证明线段、角相等,求线段的长度、角的度数,中考题中多以选择题、填空题为主,有时也考中档解答题,如:(1)如果,等腰三角形的一个外角是125°,则底角为度;(2)等腰三角形一腰上的高与底边的夹角为45°,则这个三角形是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形〖预习练习〗1.一个正三角形的边长为a,它的高是()(A)(B)(C)(D)2.如果等腰三角形一腰长为8,底边长为10,那么连结这个三角形各边的中点所成的三角形各边的中点形成的三角形的周长为()(A)26(B)14(C)13(D)93.等腰直角三角形的一条直角边为1cm,则斜边上的高为4.若等腰三角形的底角为15°,腰长为2,则腰上的高为5.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于cm6.等腰三角形的底边长为3,周长为11,则一腰长为7.等腰三角形的周长为2+,腰长为1,底角等于度8.已知如图,在△ABC中,∠B=90°,AB=BC,BD=CE,M是AC的中点,求证:△DEM是等腰三角形考点训练1.等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()(A)15(B)15或7(C)7(D)112.在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=75°,则∠A的度数为()(A)30°(B)40°(C)45°(D)60°3.等腰△ABC的顶角∠A=15°,P是△ABC内部的一点,且∠PBC=∠PCA,则∠BPC的度数为()(A)100°(B)130°(C)115°(D)140°4.等腰三角形的对称轴有()(A)1条(B)2条(C)3条(D)1条或3条5.在△ABC中,AB=AC,用∠A表示∠B,则∠B=6.如图,CD、BD平分∠BCA及∠ABC,EF过D点且EF∥BC,则图中的等腰三角形有个,它们是7.如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE⊥AB于E,则∠C=,∠BDE=,AE=;若△BDC周长为24,CD=4,则BC=,△ABD的周长为,△ABC的周长为8.等腰三角形一腰上的中线把这个三角形的周长分为15厘米和11厘米两部分,则此三角形的底边长为9.如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。10.等边三角形ABC中,D是AC中点,E为BC延长线一点,且DB=DE,求证:△DCE是等腰三角形。解题指导1.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,求证:BG=CF。2.已知如图△ABC是边长为a的等边三角形,△BCD的顶角∠BDC=120°,DB=DC以D为顶点作一个60°的角,角的两边DM、DN分别交AB于M,交AC于N,连结MN,求△ABD的周长。3.如图在△ABC中,AE平分∠BAC,∠DCB=∠B-∠ACB,求证:△DCE是等腰三角形。4.如图在△ABC中,CD⊥AB于D,且E、F、G分别是AC、BC、AB的中点,求证:∠DEF=∠BGF独立训练1.在△ABC中,∠B=36°,D、E在BC边上,且AD和AE把∠BAC三等分,则图中等腰三角形的个数()(A)3(B)4(C)5(D)62.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A等于()(A)30°(B)36°(C)45°(D)54°3.等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是()(A)35°(B)20°(C)35°或20°(D)无法确定4.等腰三角形的顶角等于一个底角的3倍,则顶角的度数为,底角的度数为2.等腰三角形三个内角与顶角的外角之和等于260°,则它的底角度数为3.等腰△ABC中,AB=AC,BC=6cm,则△ABC的周长的取值范围是7.如图,等边△ABC中,O点是∠ABC及∠ACB的角平分线的交点,OM∥AB交BC于M,ON∥AC交BC于N,求证...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

九年级数学等腰三角形教案北师大版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部