14.2.2一次函数(3)——确定一次函数解析式重、难点与关键1.重点:待定系数法求一次函数解析式.2.难点:解决抽象的函数问题.3.关键:熟练应用二元一次方程组的代入法、加减法解一次函数中的待定系数.教学方法采用“问题解决”的方法,让学生在问题解决中感受一次函数的内涵.教学过程一、范例点击,获取新知【例4】已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【思路点拨】求一次函数y=kx+b的解析式,关键是求出k、b的值,从已知条件可以列出关于k、b的二元一次方程组,并求出k、b.【教师活动】分析例题,讲解方法.【学生活动】联系已学习的二元一次方程组,以此为工具,解决问题,参与教师讲例,主动思考.解:设这个一次函数的解析式为y=kx+b.依题意得:这个一次函数的解析式为y=2x-1.【方法流程】【教师活动】引导学生归纳总结知识的流程图,提高认识.二、随堂练习,巩固深化课本P118练习.三、课堂总结,发展潜能根据已知的自变量与函数的对应值,可以利用待定系数法确定一次函数解析式,具体步骤如下:1.写出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数,因此叫做待定系数).2.把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程)3.解方程或方程组,求出待定系数的值,从而写出所求函数的解析式.四、布置作业,专题突破课本P121习题14.2第6,7,8题.板书设计14.2.2一次函数(3)1、用待定系数法求解一次函数的解析式例:2、方法流程练习: