1.2平行线的判定(1)【教学目标】一、知识与技能目标:了解推理、证明的格式,掌握平行线判定公理及其推论二、过程与方法目标:会用判定公理及推论进行简单的推理论证.三、情感与态度目标:通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.【教学重点与难点】教学重点:是“同位角相等,两直线平行”的判定方法.教学难点:是例1的推理过程的正确表达.【教学过程】1.合作动手实验引入复习画两条平行线的方法:提问:(1)怎样用语言叙述上面的图形?(直线l1,l2被AB所截)(2)画图过程中,什么角始终保持相等?(同位角相等,即∠1=∠2)(3)直线l1,l2位置关系如何?(l1∥l2)(4)可以叙述为:∵∠1=∠2∴l1∥l2(?)2.平行线的判定方法1:由上面,同学们你能发现判定两直线平行的方法吗?语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单地说:同位角相等,两直线平行。几何叙述:∵∠1=∠2∴l1∥l2(同位角相等,两直线平行)3.课堂练习:4.画图练习:P6课内练习1、3P6作业题15.例1P6已知直线l1,l2被l3所截,如图,∠1=45°,∠2=135°,试判断l1与l2是否平行.并说明理由.解:l1∥l2理由如下:∵∠2+∠3=180°,∠2=135°∴∠3=180°-∠2=180°-135°=45°∵∠1=45°∴∠1=∠3∴l1∥l2(同位角相等,两直线平行)思路:(1)判定平行线方法.(2)图中有无同位角(注∠3位置)(3)能说明∠3=∠1吗?(4)结论.(5)∠3还可以是其它位置吗?你能说明l1∥l2吗?6.练习:P7作业题3作业题2作业题4对于2、4你有不同的方法吗?7.小结与反思:(1)你学到了什么?(2)你认为还有什么不懂的?(3)你有什么经验与收获让同学们共享呢?l3l1l21238.布置作业.见作业本板书设计