7.2认识函数(1)【教学目标】知识目标:了解函数、自变量、函数解析式、函数值的概念,函数的三种表示法:(1)解析法;(2)列表法;(3)图象法.能力目标:初步认识函数的概念,理解函数值的实际意义。情感目标:通过用函数来表示一些实际问题,说明生活离不开数学,数学的发展来源于社会的发展。【教学重点与难点】教学重点:函数的概念、表示法等,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点.教学难点:用图象来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程,是本节教学的难点.【教学过程】1.创设情境问题1小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬按16元/时计算.设小明的哥哥这个月工作的时间为时,应得报酬为元,填写下表:工作时间(时)15101520……报酬(元)然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量16,变量、)(2)能用的代数式来表示的值吗?(能,=16)教师指出:在这个变化过程中,有两个变量,,对的每一个确定的值,都有唯一确定的值与它对应.问题2跳远运动员按一定的起跳姿势,其跳远的距离(米)与助跑的速度(米/秒)有关.根据经验,跳远的距离(0<<10.5).然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量0.085,变量、)(2)计算当分别为7.5,8,8.5时,相应的跳远距离是多少(结果保留3个有效数字)?(3)给定一个的值,你能求出相应的的值吗?教师指出:在这个变化过程中,有两个变量,,对的每一个确定的值,都有唯一确定的值与它对应.本环节设计的意图:通过对两个学生熟悉的问题的讨论,既巩固了上一节课中常量、变量的概念,又为本节课学习函数的概念作好准备.相关以往知识:________________________________________________________________________________________教学内容和方法:____________________________________________________________________________________________________________________________________个性化教学思路及改进建议:__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.探究新知(1)函数的概念在第一个环节的基础上,教师归纳得出函数的概念:一般地,如果对于的每一个确定的值,都有唯一确定的值,那么就说是的函数,叫做自变量.例如,上面的问题1中,是的函数,是自变量;问题2中,是对的的函数,是自变量.教师指出:①函数概念的教学中,要着重引导学生分析问题中一对变量之间的依存关系——当其中一个变量确定一个值,另一个变量也相应有一个确定的值.②函数的本质是一种对应关系——映射,由于用映射来定义函数,对初中生来说是难以接受的,所以课本对函数概念采取了比较直观的描述.这种直观的描述也和传统教材有所区别:描述中改变了过去那种“y都有唯一确定的值和它对应”的说法,即避开“对应”的意义.③实际问题中的自变量往往受到条件的约束,它必须满足①代数式有意义;②符合实际.如问题1中自变量表示一个月工作的时间,因此t不能取负数,也不能大于744;如问题2中自变量表示...