《27.2.3相似三角形的周长和面积》教案课题授课时间年月日教学目标知识与能力1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.2.能用三角形的性质解决简单的问题过程与方法1让能学生综合运用相似的知识,加深对相似三角形的理解和认识。2学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。情感态度价值观培养学生的观察﹑归纳﹑建模﹑应用能力;发展学生的数学应用意识。教学重点相似三角形的性质与运用.教学难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.教学方法合作深究教具准备课型新授教学活动教学环节补充一、情景导学:1.复习提问:已知:∆ABC∽A’B∆’C’,根据相似的定义,我们有哪些结论?(从对应边上看;从对应角上看:)二、自学梳理问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论?2.思考:(1)如果两个三角形相似,它们的周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?(3)两个相似多边形的周长和面积分别有什么关系?三、合作解疑:结论——相似三角形的性质:性质1相似三角形周长的比等于相似比.即:如果△ABC∽△A′B′C′,且相似比为k,那么.性质2相似三角形面积的比等于相似比的平方.即:如果△ABC∽△A′B′C′,且相似比为k,那么.相似多边形的性质1.相似多边形周长的比等于相似比.相似多边形的性质2.相似多边形面积的比等于相似比的平方.四、点拨校正(师生共同分析,总结归纳)例1(补充)已知:如图:△ABC∽△A′B′C′,它们的周长分别是60cm和72cm,且AB=15cm,B′C′=24cm,求BC、AB、A′B′、A′C′的长.分析:根据相似三角形周长的比等于相似比可以求出BC等边的长.例2(教材P53例6)分析:根据已知可以得到,又有夹角∠D=∠A,由相似三角形的判定方法2可以得到这两个三角形相似,且相似比为,故△DEF的周长和面积可求出.解:略五、巩固应用:1.教材P54.1.2.填空:(1)如果两个相似三角形对应边的比为3∶5,那么它们的相似比为________,周长的比为_____,面积的比为_____.(2)如果两个相似三角形面积的比为3∶5,那么它们的相似比为________,周长的比为________.(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于_______.(4)两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为________cm,面积为_______cm2.3.如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形相似吗?如果相似,求出△A1B1C1和△A2B2C2的面积比.六、课堂小结:说说你在本节课的收获。七、达标检测:(见学案)板书设计: