数理经济学数理统计学经济学统计学数学经济统计学计量经济学计量经济学读书笔记第一部分基础内容一、计量经济学与相关学科的关系二、古典假设下计量经济学的建模过程1.依据经济理论建立模型2.抽样数据收集3.参数估计4.模型检验(1)经济意义检验(包括参数符号、参数大小等)(2)统计意义检验(拟合优度检验、模型显著性检验、参数显著性检验)(3)计量经济学检验(异方差检验、自相关检验、多重共线性检验)(4)模型预测性检验(超样本特性检验)5.模型的应用(结构分析、经济预测、政策评价、检验和发展经济理论)三、几个重要的“变量”1.解释变量与被解释变量2.内生变量与外生变量3.滞后变量与前定变量4.控制变量四、回归中的四个重要概念1.总体回归模型(PopulationRegressionModel,PRM)yt=b0+b1xt+ut--代表了总体变量间的真实关系。2.总体回归函数(PopulationRegressionFunction,PRF)E(yt)=b0+b1xt--代表了总体变量间的依存规律。3.样本回归函数(SampleRegressionFunction,SRF)yt=^b0+^b1xt+et--代表了样本显示的变量关系。4.样本回归模型(SampleRegressionModel,SRM)^yt=^b0+^b1xt---代表了样本显示的变量依存规律。总体回归模型与样本回归模型的主要区别是:①描述的对象不同。总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所关的样本中变量y与x的相互关系。②建立模型的依据不同。总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。③模型性质不同。总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。五、随机误差项的内容1.模型中被忽略的影响因素的影响2.模型关系设定不准确的影响3.变量的测量误差影响4.随机因素影响六、一元线性回归模型的基本假定(古典假定)①零均值E(ui)=0②同方差Var(ui)=σ2③无自相关性Cov(ui,uj)=0④解释变量与随机扰动项ei不相关Cov(xi,ui)=0⑤随机扰动项服从正态分布ui~N(0,σ2)⑥解释变量之间不相关(多重共线性)Cov(xi,xj)=0(属于多元线性回归假定)七、OLS估计式特性(BestLinearUnbiasedEstimators)线性性(Linear,指参数估计量^b0与^b1分别为观测值yt和随机误差项ut的线性函数或线性组合)无偏性(Unbiased,指参数估计量^b0和^b1的均值分别等于总体参数值b0与b1)最小方差性(Best,有效性,指在所有的线性、无偏估计量中,最小二乘估计量^b0和^b1的方差最小)第二部分计量经济检验在古典线性回归模型中,应用最小二乘法估计的估计量具有BLUE的特性,但是当模型不是线性模型和不满足古典假设的时候,最小二乘法估计的估计量不再有BLUE的特性。本部分主要解决非、线性回归模型和违反古典假设下的参数估计与假设检验问题。一、非线性回归模型1.可线性化模型(1)双对数模型(不变弹性模型)Q=ALαKβeu——lnQ=lnA+αlnL+βlnK+u(2)半对数模型(不变增长模型)y=b0+b1lnx+ulny=b0+b1x+u(3)倒数模型(双曲线模型)y=b0+b11x+u1y=b0+b11x+u(4)多项式模型y=b0+b1x1+⋯+bkxk+u(5)成长模型A.Logistics成长曲线yt=K1+ef(t),其中f(t)=a0+a1t+a2t2+⋯+aktk简化式yt=k1+b0e−b1t——ln(1yt−1K)=ln(b0K)−b1tB.Gompertz成长曲线yt=eK+b0bt1——ln(lnyt−K)=lnb0+t⋅lnb12.不可线性化模型对于非线性化模型,一般采用高斯-牛顿迭代估计法进行估计,即将其展成泰勒级数之后,再利用迭代估计法进行估计。迭代估计法基本思想:通过泰勒级数展开先使非线性方程在某一组初始参数估计值附近线性化,然后对这一线性方程应用OLS法,得出一组新的参数估计值。重复直至参数估计值收敛为止。二、违反古典假设的回归模型1.异方差性(针对古典假定②)A概念:随机误差项ui的方差不等于一个常数,即Var(ui|Xi)=σi2≠常数(i=1,2,3,…,n)B产生原因(遗漏了重要的解释变量、模型形式有误、统计误差、偶然随机因素)C后果(Var(^β1)增大、无法计算估计误差和估计区间、解释变量显著性检验失效t检验失效、预测精度降...