专题检测(十八)概率、随机变量及其分布列(高考题型全能练)一、选择题1.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3122.(2016·张掖模拟)某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为()A.B.C.D.3.(2016·广州模拟)在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.4.(2016·江西两市联考)已知集合M={1,2,3},N={1,2,3,4}.定义映射f:M→N,则从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的概率为()A.B.C.D.5.不等式组表示的点集记为A,不等式组表示的点集记为B,在A中任取一点P,则P∈B的概率为()A.B.C.D.6.先后掷两次骰子(骰子的六个面上分别有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x,y,记事件A“为x+y”为偶数,事件B“为x,y中有偶数且x≠y”,则概率P(B|A)=()A.B.C.D.二、填空题7.(2016·山东高考)在[-1,1]上随机地取一个数k,“则事件直线y=kx与圆(x-5)2+y2=9”相交发生的概率为________.8.(2016·四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是__________.9.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p(p≠0),射击次数为η,若η的均值E(η)>,则p的取值范围是________.三、解答题10.(2016·全国甲卷)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.11.(2016·石家庄一模)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;(2)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和均值.12.(2016·贵阳模拟)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.(1)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(2)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.答案一、选择题1.解析:选A3次投篮投中2次的概率为P(k=2)=C×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C×0.62×(1-0.6)+0.63=0.648.2.解析:选B第一次摸出新球记为事件A,则P(A)=,第二次取到新球记为事件B,则P(AB)==,∴P(B|A)===,故选B.3.解析:选A依题意作出图象如图,则P(y≤2x)===.4.解析:选C 集合M={1,2,3},N={1,2,3,4},N有43=64种,∴映射f:M→N有43=64种, 由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC,∴f(1)=f(3)≠f(2), f(1)=f(3)有4种选择,f(2)有3种选择,∴从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的事件有4×3=12种,...