电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 46分大题保分练(五)文-人教版高三数学试题VIP免费

高考数学二轮复习 46分大题保分练(五)文-人教版高三数学试题_第1页
高考数学二轮复习 46分大题保分练(五)文-人教版高三数学试题_第2页
高考数学二轮复习 46分大题保分练(五)文-人教版高三数学试题_第3页
46分大题保分练(五)(建议用时:40分钟)17.(12分)(2019·长沙模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2.(1)求数列{an}的通项公式;(2)设bn=2log2an-11,数列{bn}的前n项和为Tn,求Tn的最小值及取得最小值时n的值.[解](1)当n=1时,S1=a1=2a1-2,解得a1=2,当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,所以an=2an-1,所以{an}是以2为首项,2为公比的等比数列,所以an=2n.(2)bn=2log2an-11=2log22n-11=2n-11,所以{bn}为等差数列,所以Tn===n2-10n,所以当n=5时,Tn有最小值T5=-25.18.(12分)(2019·郑州模拟)如图1所示,在等腰梯形ABCD中,AB∥CD,∠BAD=45°,AB=2CD=4,点E为AB的中点.将△ADE沿DE折起,使点A到达P的位置,得到如图2所示的四棱锥PEBCD,点M为棱PB的中点.图1图2(1)求证:PD∥平面MCE;(2)若平面PDE⊥平面EBCD,求三棱锥MBCE的体积.[解](1)在题图1中,因为BE=AB=CD且BE∥CD,所以四边形EBCD是平行四边形.如图,连接BD,交CE于点O,连接OM,所以点O是BD的中点,又点M为棱PB的中点,所以OM∥PD,因为PD⊄平面MCE,OM⊂平面MCE,所以PD∥平面MCE.(2)在题图2中,因为EBCD是平行四边形,所以DE=BC,因为四边形ABCD是等腰梯形,所以AD=BC,所以AD=DE,因为∠BAD=45°,所以AD⊥DE.所以PD⊥DE,又平面PDE⊥平面EBCD,且平面PDE∩平面EBCD=DE,所以PD⊥平面EBCD.由(1)知OM∥PD,所以OM⊥平面EBCD,在等腰直角三角形ADE中,因为AE=2,所以AD=DE=,所以OM=PD=AD=,S△BCE=S△ADE=1,所以V三棱锥MBCE=S△BCE·OM=.19.(12分)某客户考察了一款热销的净水器,使用寿命为十年,该款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换3个一级滤芯就需要更换1个二级滤芯,三级滤芯无需更换.其中一级滤芯每个200元,二级滤芯每个400元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为M.如图是根据100台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.(1)结合柱状图,写出集合M;(2)根据以上信息,求一台净水器在使用期内更换二级滤芯的费用大于1200元的概率(以100台净水器更换二级滤芯的频率代替1台净水器更换二级滤芯发生的概率);(3)若在购买净水器的同时购买滤芯,则滤芯可享受5折优惠(使用过程中如需再购买无优惠).假设上述100台净水器在购机的同时,每台均购买a个一级滤芯、b个二级滤芯作为备用滤芯(其中b∈M,a+b=14),计算这100台净水器在使用期内购买滤芯所需总费用的平均数,并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为14,则其中一级滤芯和二级滤芯的个数应分别是多少?[解](1)由题意可知,当一级滤芯更换9,10,11个时,二级滤芯需要更换3个,当一级滤芯更换12个时,二级滤芯需要更换4个,所以M={3,4}.(2)由题意可知,二级滤芯更换3个,需1200元,二级滤芯更换4个,需1600元,在100台净水器中,二级滤芯需要更换3个的净水器共70台,二级滤芯需要更换4个的净水器共30台,设“一台净水器在使用期内更换二级滤芯的费用大于1200元”为事件A,则P(A)==0.3.(3)a+b=14,b∈M,①若a=10,b=4,则这100台净水器更换滤芯所需费用的平均数为=2000.②若a=11,b=3,则这100台净水器更换滤芯所需费用的平均数为=1880.所以如果客户购买净水器的同时购买备用滤芯的总数为14,客户应该购买一级滤芯11个,二级滤芯3个.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数,0≤β<π),以坐标原点O为顶点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)已知直线l与曲线C相交于A,B两点,且|OA|-|OB|=2,求β.[解](1)由曲线C的参数方程可得普通方程为(x-2)2+y2=3,即x2+y2-4x+1=0,所以曲线C的极坐标方程为ρ2-4ρcosθ+1=0.(2)由直线l的参数方程可得直线l的极坐标方程为θ=β(ρ∈R).因为直线l与曲线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下的最新文档

高中英语 Unit 2 Travelling around Section Ⅶ Reading for Writing——有关旅行计划的电子邮件学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
21下载
高中英语 Unit 2 Travelling around Section Ⅵ The Rest Parts of the Unit(P30~34)学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
16下载
高中英语 Unit 2 Travelling around Section Ⅴ Writing—有关旅游的电子邮件学案 新人教版必修1-新人教版高一必修1英语学案
¥3.00元
15下载
高中英语 Unit 2 Travelling around Section Ⅴ Writing教学案 新人教版必修第一册-新人教版高一第一册英语教学案
¥3.00元
14下载
高中英语 Unit 2 Travelling around Section Ⅴ Listening and Talking学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
4下载
高中英语 UNIT 2 TRAVELLING AROUND Section Ⅳ单元要点复习学案(含解析)新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
27下载
高中英语 Unit 2 Travelling around Section Ⅳ Reading for Writing教学案 新人教版必修第一册-新人教版高一第一册英语教学案
¥3.00元
29下载
高中英语 Unit 2 Travelling around Section Ⅳ Listening and Talking Reading for Writing学案 新人教版必修1-新人教版高一必修1英语学案
¥3.00元
21下载
高中英语 Unit 2 Travelling around Section Ⅳ Discovering Useful Structures——现在进行时表将来学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
6下载
高中英语 Unit 2 Travelling around Section Ⅲ Reading and Thinking(2)学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
11下载
文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部