电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 2.10 对数函数检测 文-人教版高三数学试题VIP免费

高考数学一轮复习 2.10 对数函数检测 文-人教版高三数学试题_第1页
1/3
高考数学一轮复习 2.10 对数函数检测 文-人教版高三数学试题_第2页
2/3
高考数学一轮复习 2.10 对数函数检测 文-人教版高三数学试题_第3页
3/3
课时跟踪检测(十三)对数函数A级——保大分专练1.函数y=的定义域是()A.[1,2]B.[1,2)C.D.解析:选C由即解得x≥.2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2xB.C.logxD.2x-2解析:选A由题意知f(x)=logax(a>0,且a≠1).∵f(2)=1,∴loga2=1.∴a=2.∴f(x)=log2x.3.如果logxy>1.4.(2019·海南三市联考)函数f(x)=|loga(x+1)|(a>0,且a≠1)的大致图象是()解析:选C函数f(x)=|loga(x+1)|的定义域为{x|x>-1},且对任意的x,均有f(x)≥0,结合对数函数的图象可知选C.5.(2018·惠州调研)若a=20.5,b=logπ3,c=log2sin,则a,b,c的大小关系为()A.b>c>aB.b>a>cC.c>a>bD.a>b>c解析:选D依题意,得a>1,01,得c<0,故a>b>c.6.设函数f(x)=loga|x|(a>0,且a≠1)在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是()A.f(a+1)>f(2)B.f(a+1)f(2).7.已知a>0,且a≠1,函数y=loga(2x-3)+的图象恒过点P.若点P也在幂函数f(x)的图象上,则f(x)=________.解析:设幂函数为f(x)=xα,因为函数y=loga(2x-3)+的图象恒过点P(2,),则2α=,所以α=,故幂函数为f(x)=x.答案:x8.已知函数f(x)=loga(x+b)(a>0,且a≠1)的图象过两点(-1,0)和(0,1),则logba=________.解析:f(x)的图象过两点(-1,0)和(0,1).则f(-1)=loga(-1+b)=0,且f(0)=loga(0+b)=1,所以即所以logba=1.答案:19.(2019·武汉调研)函数f(x)=loga(x2-4x-5)(a>1)的单调递增区间是________.解析:由函数f(x)=loga(x2-4x-5),得x2-4x-5>0,得x<-1或x>5.令m(x)=x2-4x-5,则m(x)=(x-2)2-9,m(x)在[2,+∞)上单调递增,又由a>1及复合函数的单调性可知函数f(x)的单调递增区间为(5,+∞).答案:(5,+∞)10.设函数f(x)=若f(a)>f(-a),则实数a的取值范围是________________.解析:由f(a)>f(-a)得或即或解得a>1或-1<a<0.答案:(-1,0)∪(1,+∞)11.求函数f(x)=log2·log(2x)的最小值.解:显然x>0,∴f(x)=log2·log(2x)=log2x·log2(4x2)=log2x·(log24+2log2x)=log2x+(log2x)2=2-≥-,当且仅当x=时,有f(x)min=-.12.设f(x)=loga(1+x)+loga(3-x)(a>0,且a≠1),且f(1)=2.(1)求a的值及f(x)的定义域;(2)求f(x)在区间上的最大值.解:(1)∵f(1)=2,∴loga4=2(a>0,且a≠1),∴a=2.由得-1<x<3,∴函数f(x)的定义域为(-1,3).(2)f(x)=log2(1+x)+log2(3-x)=log2[(1+x)(3-x)]=log2[-(x-1)2+4],∴当x∈(-1,1]时,f(x)是增函数;当x∈(1,3)时,f(x)是减函数,故函数f(x)在上的最大值是f(1)=log24=2.B级——创高分自选1.已知函数f(x)=logax(a>0,且a≠1)满足f>f,则f>0的解集为()A.(0,1)B.(-∞,1)C.(1,+∞)D.(0,+∞)解析:选C因为函数f(x)=logax(a>0,且a≠1)在(0,+∞)上为单调函数,而<且f>f,所以f(x)=logax在(0,+∞)上单调递减,即00,得0<1-<1,所以x>1,故选C.2.若函数f(x)=loga(a>0,且a≠1)在区间内恒有f(x)>0,则f(x)的单调递增区间为________.解析:令M=x2+x,当x∈时,M∈(1,+∞),f(x)>0,所以a>1,所以函数y=logaM为增函数,又M=2-,因此M的单调递增区间为.又x2+x>0,所以x>0或x<-,所以函数f(x)的单调递增区间为(0,+∞).答案:(0,+∞)3.已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=logx.(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.解:(1)当x<0时,-x>0,则f(-x)=log(-x).因为函数f(x)是偶函数,所以f(x)=f(-x)=log(-x),所以函数f(x)的解析式为f(x)=(2)因为f(4)=log4=-2,f(x)是偶函数,所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).又因为函数f(x)在(0,+∞)上是减函数,所以|x2-1|<4,解得-

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 2.10 对数函数检测 文-人教版高三数学试题

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群