电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 第二篇 第27练 导数的综合应用精准提分练习 文-人教版高三数学试题VIP免费

高考数学二轮复习 第二篇 第27练 导数的综合应用精准提分练习 文-人教版高三数学试题_第1页
1/9
高考数学二轮复习 第二篇 第27练 导数的综合应用精准提分练习 文-人教版高三数学试题_第2页
2/9
高考数学二轮复习 第二篇 第27练 导数的综合应用精准提分练习 文-人教版高三数学试题_第3页
3/9
第27练导数的综合应用[明晰考情]1.命题角度:函数与方程、不等式的交汇是考查的热点,常以指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.2.题目难度:偏难题.考点一利用导数研究函数的零点(方程的根)方法技巧求解函数零点(方程根)的个数问题的基本思路(1)转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题.(2)利用导数研究该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图象.(3)结合图象求解.1.设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.解(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b. f(0)=c,f′(0)=b,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.(2)当a=b=4时,f(x)=x3+4x2+4x+c,∴f′(x)=3x2+8x+4.令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-.当x变化时,f(x)与f′(x)在区间(-∞,+∞)上的变化情况如下:x(-∞,-2)-2-f′(x)+0-0+f(x)↗c↘c-↗∴当c>0且c-<0时,f(-4)=c-16<0,f(0)=c>0,存在x1∈(-4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c∈时,函数f(x)=x3+4x2+4x+c有三个不同零点.2.(2018·东莞模拟)已知函数f(x)=ex-2x-1.(1)求曲线y=f(x)在(0,f(0))处的切线方程;(2)设g(x)=af(x)+(1-a)ex,若g(x)有两个零点,求实数a的取值范围.解(1)由题意知f′(x)=ex-2,k=f′(0)=1-2=-1,又f(0)=e0-2×0-1=0,∴f(x)在(0,f(0))处的切线方程为y=-x.(2)g(x)=ex-2ax-a,g′(x)=ex-2a.当a≤0时,g′(x)>0,∴g(x)在R上单调递增,不符合题意.当a>0时,令g′(x)=0,得x=ln(2a),在(-∞,ln(2a))上,g′(x)<0,在(ln(2a),+∞)上,g′(x)>0,∴g(x)在(-∞,ln(2a))上单调递减,在(ln(2a),+∞)上单调递增,∴g(x)极小值=g(ln(2a))=2a-2aln(2a)-a=a-2aln(2a). g(x)有两个零点,∴g(x)极小值<0,即a-2aln(2a)<0, a>0,∴ln(2a)>,解得a>,∴实数a的取值范围为.3.(2018·新余模拟)已知函数f(x)=(x-1)ex+ax2,a∈R.(1)讨论函数f(x)的单调区间;(2)若f(x)有两个零点,求a的取值范围.解(1)f′(x)=ex+(x-1)ex+2ax=x(ex+2a).①若a≥0,则当x>0时,f′(x)>0;当x<0时,f′(x)<0.故函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.②当a<0时,由f′(x)=0,解得x=0或x=ln(-2a).(ⅰ)若ln(-2a)=0,即a=-,则∀x∈R,f′(x)=x(ex-1)≥0,故f(x)在(-∞,+∞)上单调递增;(ⅱ)若ln(-2a)<0,即-0;当x∈(ln(-2a),0)时,f′(x)<0.故函数f(x)在(-∞,ln(-2a)),(0,+∞)上单调递增,在(ln(-2a),0)上单调递减.(ⅲ)若ln(-2a)>0,即a<-,则当x∈(-∞,0)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(0,ln(-2a))时,f′(x)<0.故函数f(x)在(-∞,0),(ln(-2a),+∞)上单调递增,在(0,ln(-2a))上单调递减.(2)①当a>0时,由(1)知,函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.因为f(0)=-1<0,f(2)=e2+4a>0,取实数b满足b<-2且ba(b-1)+ab2=a(b2+b-1)>a(4-2-1)>0,所以f(x)有两个零点;②若a=0,则f(x)=(x-1)ex,故f(x)只有一个零点.③若a<0,由(1)知,当a≥-时,则f(x)在(0,+∞)上单调递增,又当x≤0时,f(x)<0,故f(x)不存在两个零点;当a<-时,则f(x)在(-∞,0),(ln(-2a),+∞)上单调递增;在(0,ln(-2a))上单调递减.又f(0)=-1,故不存在两个零点.综上所述,a的取值范围是(0,+∞).考点二利用导数证明不等式问题方法技巧利用导数证明不等式f(x)>g(x)在区间D上恒成立的基本方法是构造函数h(x)=f(x)-g(x),然后根据函数的单调性或者函数的最值证明函数h(x)>0.其中找到函数h(x)=f(x)-g(x)的零点是解题的突破口.4.设函数f(x)=lnx-x+1.(1)讨论函数f(x)的单调性;(2)证明:当x∈(1,+∞)时,1<0),得f′(x)=-1.令f′...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 第二篇 第27练 导数的综合应用精准提分练习 文-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部