电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 解答题通关练4 解析几何 文-人教版高三数学试题VIP免费

高考数学二轮复习 解答题通关练4 解析几何 文-人教版高三数学试题_第1页
1/3
高考数学二轮复习 解答题通关练4 解析几何 文-人教版高三数学试题_第2页
2/3
高考数学二轮复习 解答题通关练4 解析几何 文-人教版高三数学试题_第3页
3/3
4.解析几何1.已知椭圆C:+=1(a>b>0)的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.(1)解由题意可得解得故椭圆C的方程为+y2=1.(2)证明由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+m(m≠0),由消去y,整理得(1+4k2)x2+8kmx+4(m2-1)=0,∵直线l与椭圆交于两点,∴Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0.设点P,Q的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.∵直线OP,l,OQ的斜率成等比数列,∴k2=·=,整理得km(x1+x2)+m2=0,∴+m2=0,又m≠0,∴k2=,结合图象(图略)可知k=-,故直线l的斜率为定值.2.已知抛物线Γ:x2=2py(p>0),直线y=2与抛物线Γ交于A,B(点B在点A的左侧)两点,且|AB|=4.(1)求抛物线Γ在A,B两点处的切线方程;(2)若直线l与抛物线Γ交于M,N两点,且MN的中点在线段AB上,MN的垂直平分线交y轴于点Q,求△QMN面积的最大值.解(1)由x2=2py,令y=2,得x=±2,所以4=4,解得p=3,所以x2=6y,由y=,得y′=,故y′|x=2=.所以在A点的切线方程为y-2=(x-2),即2x-y-2=0,同理可得在B点的切线方程为2x+y+2=0.(2)由题意得直线l的斜率存在且不为0,故设l:y=kx+m,M(x1,y1),N(x2,y2),由x2=6y与y=kx+m联立,得x2-6kx-6m=0,Δ=36k2+24m>0,所以x1+x2=6k,x1x2=-6m,故|MN|=·=2··.又y1+y2=k(x1+x2)+2m=6k2+2m=4,所以m=2-3k2,所以|MN|=2··,由Δ=36k2+24m>0,得-0,得1b>0)的左顶点、右焦点,点P为椭圆C上一动点,当PF⊥x轴时,|AF|=2|PF|.(1)求椭圆C的离心率;(2)若椭圆C上存在点Q,使得四边形AOPQ是平行四边形(点P在第一象限),求直线AP与OQ的斜率之积;(3)记圆O:x2+y2=为椭圆C的“关联圆”.若b=,过点P作椭圆C的“关联圆”的两条切线,切点为M,N,直线MN在x轴和y轴上的截距分别为m,n,求证:+为定值.(1)解由PF⊥x轴,知xP=c,代入椭圆C的方程,得+=1,解得yP=±.又|AF|=2|PF|,所以a+c=,所以a2+ac=2b2,即a2-2c2-ac=0,所以2e2+e-1=0,由0b>0)的右顶点为A(2,0),左、右焦点分别为F1,F2,过点A且斜率为的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1.(1)求椭圆C的标准方程;(2)过点P且斜率大于的直线与椭圆交于M,N两点(|PM|>|PN|),若S△PAM∶S△PBN=λ,求实数λ的取值范围.解(1)因为BF1⊥x轴,得到点B,所以解得所以椭圆C的标准方程是+=1.(2)因为===λ,所以=(λ>2),所以PM=-PN.由(1)可知P(0,-1),设MN方程为y=kx-1,M(x1,y1),N(x2,y2),联立得(4k2+3)x2-8kx-8=0,Δ>0恒成立,即得(*)又PM=(x1,y1+1),PN=(x2,y2+1),有x1=-x2,将x1=-x2代入(*)可得,=.因为k>,所以=∈(1,4),则1<2<4且λ>2,即得4<λ<4+2.综上所述,实数λ的取值范围为(4,4+2).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 解答题通关练4 解析几何 文-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部