课时跟踪检测(七)1.(2018届高三·广西三市联考)已知数列{an}的前n项和为Sn,且Sn=2n-1(n∈N*).(1)求数列{an}的通项公式;(2)设bn=log4an+1,求{bn}的前n项和Tn.解:(1)当n≥2时,an=Sn-Sn-1=2n-1,当n=1时,a1=2-1=1,满足an=2n-1,∴数列{an}的通项公式为an=2n-1(n∈N*).(2)由(1)得,bn=log4an+1=,则bn+1-bn=-=,又b1=log4a1+1=1,∴数列{bn}是首项为1,公差d=的等差数列,∴Tn=nb1+d=.2.(2017·福州质检)已知等差数列{an}的各项均为正数,其公差为2,a2a4=4a3+1.(1)求{an}的通项公式;(2)求a1+a3+a9…++a3n.解:(1)依题意知,an=a1+2(n-1),an>0.因为a2a4=4a3+1,所以(a1+2)(a1+6)=4(a1+4)+1,所以a+4a1-5=0,解得a1=1或a1=-5(舍去),所以an=2n-1.(2)a1+a3+a9…++a3n=(2×1-1)+(2×3-1)+(2×32-1)…++(2×3n-1)=2×(1+3+32…++3n)-(n+1)=2×-(n+1)=3n+1-n-2.3.(2017·济南模拟)已知数列{an}满足a1=511,4an=an-1-3(n≥2).(1)求证:数列{an+1}为等比数列,并求数列{an}的通项公式;(2)令bn=|log2(an+1)|,求数列{bn}的前n项和Sn.解:(1)证明:当n≥2时,由4an=an-1-3得an+1=(an-1+1),所以数列{an+1}是以512为首项,为公比的等比数列.所以an+1=512×n-1=211-2n,an=211-2n-1.(2)bn=|11-2n|,设数列{11-2n}的前n项和为Tn,则Tn=10n-n2.当n≤5时,Sn=Tn=10n-n2;当n≥6时,Sn=2S5-Tn=n2-10n+50.所以Sn=4.(2018届高三·广东五校联考)数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.解:(1)∵Sn=2an-a1,①∴当n≥2时,Sn-1=2an-1-a1;②①-②得,an=2an-2an-1,即an=2an-1.由a1,a2+1,a3成等差数列,得2(a2+1)=a1+a3,∴2(2a1+1)=a1+4a1,解得a1=2.∴数列{an}是首项为2,公比为2的等比数列.∴an=2n.(2)∵an=2n,∴Sn=2an-a1=2n+1-2,Sn+1=2n+2-2.∴bn===.∴数列{bn}的前n项和Tn===.5.已知数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),且an+Sn=n.(1)设cn=an-1,求证:{cn}是等比数列;(2)求数列{bn}的通项公式及前n项和Tn.解:(1)证明:∵an+Sn=n,①∴an+1+Sn+1=n+1.②②-①得an+1-an+an+1=1,∴2an+1=an+1,∴2(an+1-1)=an-1,∴=,当n=1时,a1+S1=1,∴a1=,a1-1=-,又cn=an-1,∴{cn}是首项为-,公比为的等比数列.(2)由(1)可知cn=·n-1=-n,∴an=cn+1=1-n.∴当n≥2时,bn=an-an-1=1-n-=n-1-n=n.又b1=a1=也符合上式,∴bn=n,Tn==1-n.