1、某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?【关键词】二次函数极值【答案】【答案】(1)(2)设利润为当时,当时,综上知:在第11周进货并售出后,所获利润最大且为每件元.2、凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。【关键词】二次函数的应用ABFCGDHQPNM红黄紫E【答案】解:(1),(2),即:y因为提价前包房费总收入为100×100=10000。当x=50时,可获最大包房收入11250元,因为11250>10000。又因为每次提价为20元,所以每间包房晚餐应提高40元或60元。3、某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中.准备在形如Rt的四个全等三角形内种植红色花草,在形如Rt的四个全等三角形内种植黄色花草,在正方形内种植紫色花草,每种花草的价格如下表:品种红色花草黄色花草紫色花草价格(元/米2)6080120设的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:(1)与之间的函数关系式为;(2)求与之间的函数关系式,并求所需的最低费用是多少元;(3)当买花草所需的费用最低时,求的长.【关键词】二次函数的极值问题、与二次函数有关的面积问题【答案】解:(1)(2)=60图14=80配方,得当时,元.(3)设米,则.在Rt中,解得的长为米.4、如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.(1)用含的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【关键词】二次函数的应用【答案】解:(1)横向甬道的面积为:,(2)依题意:,整理得:(不符合题意,舍去),甬道的宽为5米.(3)设建设花坛的总费用为万元.,当时,的值最小.,因为根据设计的要求,甬道的宽不能超过6米,米时,总费用最少.最少费用为:万元5、、(2009年鄂州)24、如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米。学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图)。其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上。现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元。(1)当FG长为多少米时,种草的面积与种花的面积相等?(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?【关键词】二次函数的应用【答案】(1)设FG=x米,则AK=(80-x)米,△AHGABCBC=120∽△,AD=80可得:HG120=80−x80∴HG=120−32xBE+FC=120-(120−32x)=32x∴12·(120−32x)·(80−x)=12×32x·x解得x=40∴当FG的长为40...