电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数总复习 第14篇 第1讲 坐标系限时训练 理VIP免费

高考数总复习 第14篇 第1讲 坐标系限时训练 理_第1页
1/4
高考数总复习 第14篇 第1讲 坐标系限时训练 理_第2页
2/4
高考数总复习 第14篇 第1讲 坐标系限时训练 理_第3页
3/4
系列4选讲第1讲坐标系分层+A级基础达标演练(时间:40分钟满分:80分)1.(·广州测试)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,求|AB|的长.解注意到在极坐标系中,过点(1,0)且与极轴垂直的直线的直角坐标方程是x=1,曲线ρ=4cosθ的直角坐标方程是x2+y2=4x,即(x-2)2+y2=4,圆心(2,0)到直线x=1的距离等于1,因此|AB|=2=2.2.(·安徽)在极坐标系中,求点到圆ρ=2cosθ的圆心的距离.解点――→点(1,),ρ=2cosθ――→x2+y2-2x=0,圆x2+y2-2x=0的圆心坐标为(1,0),由两点间的距离公式得,所求两点距离为=.3.在极坐标系中,求过圆ρ=6cosθ-2sinθ的圆心且与极轴垂直的直线的极坐标方程.解由ρ=6cosθ-2sinθ⇒ρ2=6ρcosθ-2ρsinθ,所以圆的直角坐标方程为x2+y2-6x+2y=0,将其化为标准形式为(x-3)2+(y+)2=11,故圆心的坐标为(3,-),所以过圆心且与x轴垂直的直线的方程为x=3,将其化为极坐标方程为ρcosθ=3.4.(·广州广雅中学模拟)在极坐标系中,求圆ρ=4上的点到直线ρ(cosθ+sinθ)=8的距离的最大值.解把ρ=4化为直角坐标方程为x2+y2=16,把ρ(cosθ+sinθ)=8化为直角坐标方程为x+y-8=0,∴圆心(0,0)到直线的距离为d==4.∴直线和圆相切,∴圆上的点到直线的最大距离是8.5.(·江西九校联考)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:θ=,若曲线C1与C2交于A、B两点,求线段AB的长.解曲线C1与C2均经过极点,因此极点是它们的一个公共点.由得即曲线C1与C2的另一个交点与极点的距离为,因此AB=.6.(·深圳调研)在极坐标系中,P,Q是曲线C:ρ=4sinθ上任意两点,求线段PQ长度的最大值.解由曲线C:ρ=4sinθ,得ρ2=4ρsinθ,x2+y2-4y=0,x2+(y-2)2=4,即曲线C:ρ=4sinθ在直角坐标系下表示的是以点(0,2)为圆心、以2为半径的圆,易知该圆上的任意两点间的距离的最大值即是圆的直径长,因此线段PQ长度的最大值是4.7.如图,在圆心的极坐标为A(4,0),半径为4的圆中,求过极点O的弦的中点的轨迹.解设M(ρ,θ)是所求轨迹上任意一点.连接OM并延长交圆A于点P(ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cosθ,得ρ0=8cosθ0.所以2ρ=8cosθ,即ρ=4cosθ.故所求轨迹方程是ρ=4cosθ.它表示以(2,0)为圆心,2为半径的圆.8.(·江西八校联考)若直线3x+4y+m=0与曲线ρ2-2ρcosθ+4ρsinθ+4=0没有公共点,求实数m的取值范围.解注意到曲线ρ2-2ρcosθ+4ρsinθ+4=0的直角坐标方程是x2+y2-2x+4y+4=0,即(x-1)2+(y+2)2=1.要使直线3x+4y+m=0与该曲线没有公共点,只要圆心(1,-2)到直线3x+4y+m=0的距离大于圆的半径即可,即>1,|m-5|>5,解得,m<0,或m>10.分层B级创新能力提升1.设过原点O的直线与圆(x-1)2+y2=1的一个交点为P,点M为线段OP的中点,当点P在圆上移动一周时,求点M轨迹的极坐标方程,并说明它是什么曲线.解圆(x-1)2+y2=1的极坐标方程为ρ=2cosθ,设点P的极坐标为(ρ1,θ1),点M的极坐标为(ρ,θ), 点M为线段OP的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cosθ.∴点M轨迹的极坐标方程为ρ=cosθ,它表示圆心在点,半径为的圆.2.(·福建)在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)求圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|+|PB|.解法一(1)由ρ=2sinθ,得x2+y2-2y=0,即x2+(y-)2=5.(2)将l的参数方程代入圆C的直角坐标方程,得2+2=5,即t2-3t+4=0.由于Δ=(3)2-4×4=2>0,故可设t1,t2是上述方程的两实根,所以又直线l过点P(3,),故由上式及t的几何意义得,|PA|+|PB|=|t1|+|t2|=t1+t2=3.法二(1)同法一.(2)因为圆C的圆心为(0,),半径r=,直线l的普通方程为:y=-x+3+.由得x2-3x+2=0.解得:或不妨设A(1,2+),B(2,1+),又点P的坐标为(3,),...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数总复习 第14篇 第1讲 坐标系限时训练 理

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部