圆锥曲线(一)选择题1.(07山东卷(10)设椭圆C1的离心率为,焦点在X轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A)(B)(C)(D)答案:A2.(2009山东卷理)设双曲线12222byax的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为().A.45B.5C.25D.5【解析】:双曲线12222byax的一条渐近线为xaby,由方程组21byxayx,消去y,得210bxxa有唯一解,所以△=2()40ba,所以2ba,2221()5cabbeaaa,故选D.答案:D.【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.3.(2009山东卷文)设斜率为2的直线l过抛物线2(0)yaxa的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为().A.24yxB.28yxC.24yxD.28yx【解析】:抛物线2(0)yaxa的焦点F坐标为(,0)4a,则直线l的方程为2()4ayx,它与y轴的交点为A(0,)2a,所以△OAF的面积为1||||4242aa,解得8a.所以抛物线方程为28yx,故选B.答案:B.【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数a的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.4、(2010山东文数)(9)已知抛物线22(0)ypxp,过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(A)1x(B)1x(C)2x(D)2x答案:B5、(2010山东理数)(7)由曲线y=2x,y=3x围成的封闭图形面积为(A)112(B)14(C)13(D)712【答案】A【解析】由题意得:所求封闭图形的面积为1230x-x)dx=(1111-1=3412,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。6、(2011山东理数8)已知双曲线22221(0b0)xyaab>,>的两条渐近线均和圆C:22650xyx相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为A.22154xyB.22145xyC.22136xyD.22163xy答案:A7、(2011山东文数9)9.设M(0x,0y)为抛物线C:28xy上一点,F为抛物线C的焦点,以F为圆心、FM为半径的圆和抛物线C的准线相交,则0y的取值范围是A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)答案:C8、(2012山东卷文(11))已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为D(A)(B)(C)(D)9、(2013数学理)11.已知抛物线:的焦点与双曲线:的右焦点的连线交于第一象限的点。若在点处的切线平行于的一条渐近线,则(A)(B)(C)(D)答案:11.D10、(2013山东理)12.设正实数满足,则当取得最大值时,的最大值为(A)0(B)1(C)(D)3答案:12.B11、(2013山东数学文)(11)、抛物线)0(21:21pxpyC的焦点与双曲线222:13xCy的右焦点的连线交1C于第一象限的点M,若1C在点M处的切线平行于2C的一条渐近线,则p=(A)163(B)83(C)332(D)334答案:D12(2013山东数学文)(12)、设正实数zyx,,满足04322zyxyx,则当zxy取得最大值时,2xyz的最大值为(A)0(B)98(C)2(D)94答案:C(二)填空题1、(07山东理)(13)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为.答案:2、(2011山东文数15)已知双曲线22221(0b0)xyaab>,>和椭圆22xy=1169有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为.答案:(三)解答题1、(07山东理)(21)(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为,(II)设,由得,,.以AB为直径的圆过椭圆的右顶点,,,...