4.2.1炉渣熔化温度的测定4.2.1.1实验原理按照热力学理论,熔点通常是指标准大气压下固—液二相平衡共存时的平衡温度。炉渣是复杂多元系,其平衡温度随固—液二相成分的改变而改变,实际上多元渣的熔化温度是一个温度范围,因此无确定的熔点。在降温过程中液相刚刚析出固相时的温度叫开始凝固温度(升温时称之为完全熔化温度),即相图中液相线(或液相面上)的温度;液相完全变成固相时的温度叫完全凝固温度(或开始熔化温度),此即相图4-中固相线(或固相面)上的温度;这两个温度称为炉渣的熔化区间。由于实际渣系的复杂性,一般没有适合的相图供查阅,生产中为了粗略地比较炉渣的熔化性质,采用一种半经验的简单方法,即试样变形法来测定炉渣的熔化温度区间。常用的方法有差热分析法、热丝法和半球法(试样变形法)等。多元渣试样在升温过程中,超过开始熔化温度以后,随着液相量增加,试样形状会逐渐改变,试样变形法就是根据这一原理而制定的。如图4-1所示,随着温度升高,圆柱形试样h5/6h1/2h1/3h(a)(b)(c)(d)图2-2保护渣样品熔化过程形状变化图4-1熔化过程试样高度的变化(d)准备试样;(b)开始熔化温度;(c)高度降低1/2;(d)接近全部熔化39由(a)经过烧结收缩,然后逐步熔化,试样高度不断降低,如(b)、(c)所示,最后接近全部熔化时,试样完全塌下铺展在垫片上(d)。由此可见,只要规定一个高度标记,对应的温度就可以用于相对比较不同渣系熔化温度的高低,同时也可比较不同渣熔化的快慢,析出液相的流动性等。习惯上取试样高度降到1/2时的温度为熔化温度。用此法测得的熔化温度,既不是恒温的,又无平衡可言,绝不是热力学所指的熔点或熔化温度,而只是一种实用的相对比较的标准。4.2.1.2设备与操作实验装置如图4-2所示,它可分为高温加热系统,测温系统和试样高度光路放大观测系统。试样加热用SiC管状炉、铂丝炉或钼丝炉。炉温用程序温度控制仪控制。样品温度用电位差计或数字高温表测定。试样放在垫片上,垫片材料是刚玉质,高纯氧化镁或贵金属,要求不与试样起反应。热电偶工作端须紧贴于试样垫片之下。有光学系统把试样投影到屏幕上以便观察其形状。(现在的多功能物性仪可将试样同时投影到照相机的底片和摄像机的硅片上,然后经过图4-象卡输入到计算机中,同时储存显示试样的形状、温度及实验的时间,这样不但可以测定样品的熔化温度而且可以精确地测定其熔化速度。)图4-2熔化温度测定装置示意图4-1—屏幕;2一目镜;3一物镜;4一热电偶;5一支撑管;6一电炉;7一试样;8一垫片;9一投光灯(1)渣样制备1)将渣料配好(最好经过预熔或至少经预烧结)在不锈钢研钵中研碎(粒度小于0.O75mm)混匀成为渣粉待用;2)将渣粉置于蒸发皿内,加入少许糊精液,均匀研混,以便成型;3)将上述湿粉放在制样器中制成Ф3×3(mm)的圆柱形试样。在制样过程中,用具有一定压力的弹簧压棒捣实,然后推出渣样;4)制好的渣样自然阴干,或放在烘箱内烘干。(2)熔化温度测定1)将垫片放在支撑管的一端,并且保持水平。再将试样放在垫片上,其位置正好处于热电偶工作端的上方。然后移动炉体(有些仪器移动支撑管架),置试样于炉体高温区中部;2)调整物镜、目镜位置,使试样在屏幕上呈清晰放大象,然后调整屏幕左右上下位置,使试样象位于屏幕的六条水平刻度线之间、便于判断熔化温度;3)用程序温控仪给电炉供电升温。接近熔化温度时,升温速度应控制在5~10℃/min间的某一固定值。升温速度将影响所测的温度值及数据的重现性;4)不断观察屏幕上试样高度的变化,同时不断记录温度数值,尤其是试样顶端开始变圆时的温度(开始熔化温度)、高度降低到1/2时的温度及试样中液相完全铺展时的温度(完全熔化温度)。取高度降到1/2时的温度为熔化温度;405)取试样顶端开始变圆时的温度(开始熔化温度)和试样中液相完全铺展时的温度(完全熔化温度)为熔化温度区间。一个试样测完后,降低炉温,移开炉体,取出垫片,再置一新垫片和新试样,进行重复实验,可重复3—5次,取其平均值。2.5结晶器保护渣熔点测试在连铸过程中,保护渣的熔化温度对结晶器内钢液面上熔渣层的厚度和结晶器与坯壳之间的渣膜厚度有直接的影响,...