2022不可不知中考数学的解题技巧不行不知中考数学的好用解题技巧1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用特别广泛在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都常常用到它。第1页共12页2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有很多,除中学课本上介绍的提取公因式法、公式法分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法:换元法是数学中一个特别重要而且应用非常广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一第2页共12页个比较困难的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,探讨函数乃至解析几何、三角函数运算中都有特别广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简洁应用外,还可以求根的对称函数,计第3页共12页论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有特别广泛的应用。5、待定系数法:在解数学问题时,若先推断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后依据题设条件列出关于待定系数的等式,最终解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。6、构造法:在解题时,我们经常会采纳这样的方法,通过对条件和结论的分析,构造协助元素,它可以是一个图形、一个方程第4页共12页(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学学问相互渗透,有利于问题的解决。7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设动身,经过正确的推理,导致冲突,从而否定相反的假设,达到确定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。第5页共12页用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,驾驭一些常用的互为否定的表述形式是有必要的`,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出冲突的过程没有固定的模式,但必需从反设动身,否则推导将成为无源之水,无本之木。推理必需严谨。第6页共12页导出的冲突有如下几种类型:与已知条件冲突;与已知的公理、定义定理、公式冲突;与反设冲突;自相冲突。8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。用归纳法或分析法证明几何题,其困难在添置协助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,第7页共12页通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间...