电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学天天练习17 文-人教版高三全册数学试题VIP免费

高三数学天天练习17 文-人教版高三全册数学试题_第1页
1/12
高三数学天天练习17 文-人教版高三全册数学试题_第2页
2/12
高三数学天天练习17 文-人教版高三全册数学试题_第3页
3/12
南华中学高2016级文科数学天天练习(17)(专题)(例题)略1.【14大纲卷】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.(变式):2.(15,上海)如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,,求三棱锥的体积,并求异面直线与所成角的余弦值.二、讲稿:1.如图,在三棱柱中,在底面ABC的射影为BC的中点,D为的中点.(1)证明:;(2)求直线和平面所成的角的正弦值.2.如图,在四棱锥中,平面平面;,,,.(1)证明:平面;(2)求直线与平面所成的角的正切值.3.如图4,直三棱柱的底面是边长为2的正三角形,分别是的中点。(I)证明:平面平面;(II)若直线与平面所成的角为,求三棱锥的体积。ADEBC4.如图,长方体ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面所成角的正弦值.参考答案1.2.(15,上海)【答案】在中,,二、讲稿:1.【15浙江,文18】【答案】(1)略;(2)【解析】(1)利用线面垂直的定义得到线线垂直,根据线面垂直的判定证明直线与平面垂直;(2)通过添加辅助线,证明平面,以此找到直线与平面所成角的平面角,在直角三角形中通过确定边长,计算的正弦值.试题解析:(1)设为中点,由题意得平面,所以.因为,所以.所以平面.由,分别为的中点,得且,从而且,所以是平行四边形,所以.因为平面,所以平面.(2)作,垂足为,连结.因为平面,所以.因为,所以平面.所以平面.所以为直线与平面所成角的平面角.由,得.由平面,得.由,得.所以2.【14浙江文】3.【15湖南】【答案】(I)略;(II).【解析】试题分析:(I)首先证明,,得到平面,利用面面垂直的判定与性质定理可得平面平面;(II)设AB的中点为D,证明直线直线与平面所成的角,由题设知,求出棱锥的高与底面面积即可求解几何体的体积.试题解析:(I)如图,因为三棱柱是直三棱柱,所以,又是正三角形的边的中点,所以,因此平面,而平面,所以平面平面。(II)设的中点为,连接,因为是正三角形,所以,又三棱柱是直三棱柱,所以,因此平面,于是直线与平面所成的角,由题设知,所以,在中,,所以故三棱锥的体积。【考点定位】柱体、椎体、台体的体积;面面垂直的判定与性质【名师点睛】证明面面垂直的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.求锥的体积关键在于确定其高,即确定线面垂直.4.(15,全国2卷).解:(Ⅰ)由线面平行和面面平行的性质画平面与长方体的面的交线;(Ⅱ)由交线围成的正方形,计算相关数据.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,并求平面的法向量和直线的方向向量,利用求直线与平面所成角的正弦值.试题解析:(Ⅰ)交线围成的正方形如图:(Ⅱ)作,垂足为,则,,因为为正方形,所以.于是,所以.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,,,,,.设是平面的法向量,则即所以可取.又,故.所以直线与平面所成角的正弦值为.考点:1、直线和平面平行的性质;2、直线和平面所成的角.A1AB1BD1DC1CFEHGM

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学天天练习17 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部