电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学基础知识剖析 导数VIP免费

高三数学基础知识剖析 导数_第1页
1/2
高三数学基础知识剖析 导数_第2页
2/2
高三数学基础知识、常见结论详解三、导数一、求导法则:(c)/=0这里c是常数。即常数的导数值为0。(xn)/=nxn-1特别地:(x)/=1(x-1)/=(x1)/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k•f(x))/=k•f/(x)二、导数的几何物理意义:k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。三、导数的应用:①求切线的斜率。②导数与函数的单调性的关系(一)0)(xf与)(xf为增函数的关系。0)(xf能推出)(xf为增函数,但反之不一定。如函数3)(xxf在),(上单调递增,但0)(xf,∴0)(xf是)(xf为增函数的充分不必要条件。(二)0)(xf时,0)(xf与)(xf为增函数的关系。若将0)(xf的根作为分界点,因为规定0)(xf,即抠去了分界点,此时)(xf为增函数,就一定有0)(xf。∴当0)(xf时,0)(xf是)(xf为增函数的充分必要条件。(三)0)(xf与)(xf为增函数的关系。)(xf为增函数,一定可以推出0)(xf,但反之不一定,因为0)(xf,即为0)(xf或0)(xf。当函数在某个区间内恒有0)(xf,则)(xf为常数,函数不具有单调性。∴0)(xf是)(xf为增函数的必要不充分条件。函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三用心爱心专心1个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。(四)单调区间的求解过程,已知)(xfy(1)分析)(xfy的定义域;(2)求导数)(xfy;(3)解不等式0)(xf,解集在定义域内的部分为增区间;(4)解不等式0)(xf,解集在定义域内的部分为减区间。我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数)(xfy在某个区间内可导。③求极值、求最值。注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a)、f(b)中最大的一个。最小值为极小值和f(a)、f(b)中最小的一个。f/(x0)=0不能得到当x=x0时,函数有极值。但是,当x=x0时,函数有极值f/(x0)=0判断极值,还需结合函数的单调性说明。四、导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。用心爱心专心2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学基础知识剖析 导数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部