2015-2016学年河北省衡水中学高三(上)四调数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的.)1.在空间,下列命题错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个相交B.一个平面与两个平行平面相交,交线平行C.平行于同一平面的两个平面平行D.平行于同一直线的两个平面平行2.设集合P={x|},m=30.5,则下列关系中正确的是()A.m⊈PB.m∉PC.m∈PD.m⊄P3.如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60m,则该建筑物的高度为()A.(30+30)mB.(30+15)mC.(15+30)mD.(15+15)m4.某几何体的三视图如图所示,则该几何体的体积为()A.+B.1+C.D.15.已知正数组成的等比数列{an},若a1•a20=100,那么a7+a14的最小值为()A.20B.25C.50D.不存在6.设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()1A.[﹣1,2]B.[﹣2,1]C.[﹣3,﹣2]D.[﹣3,1]7.若函数y=f(x)的导函数为y=f′(x),且,则y=f(x)在[0,π]上的单调增区间为()A.B.C.和D.和8.已知不等式|y+4|﹣|y|≤2x+对任意实数x,y都成立,则常数a的最小值为()A.1B.2C.3D.49.己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为()A.B.C.D.10.已知,,与的夹角为,那么等于()A.2B.6C.D.1211.设过曲线f(x)=﹣ex﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2]B.(﹣1,2)C.[﹣2,1]D.(﹣2,1)12.设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题(本大题共4小题,每小题5分,共20分.)13.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种填空.)14.已知函数f(x)=,则f()+f(﹣1)=.15.设向量,(n∈N*),若,设数列{an}的前n项和为Sn,则Sn的最小值为.216.某几何体的三视图如图所示,则该几何体的体积为.三、解答题(本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.已知函数f(x)=2sin2(x+)﹣cos2x,x∈[,].设x=α时f(x)取到最大值.(1)求f(x)的最大值及α的值;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,A=α﹣,且sinBsinC=sin2A,求b﹣c的值.18.如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)求点D到平面PAM的距离.19.已知等比数列{an}的公比q>1,a1=2且a1,a2,a3﹣8成等差数列.数列{bn}的前n项和为Sn,且Sn=n2﹣8n.(Ⅰ)分别求出数列{an}和数列{bn}的通项公式;(Ⅱ)设cn=,若cn≤m,对于∀n∈N*恒成立,求实数m的最小值.20.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=.(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)当AB=时,求三棱锥C﹣A1DE的体积.321.已知f(x)=xlnx,g(x)=,直线l:y=(k﹣3)x﹣k+2(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.选做题122.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4,(1)求PF的长度.(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.选做题223.(2012•邯郸一模)选修4﹣5:不等式选讲已知函数f(x)=log2(|x﹣1|+|x+2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;...