开卷速查(三十)等比数列及其前n项和A级基础巩固练1.[2016·南昌模拟]等比数列x,3x+3,6x+6,…的第四项等于()A.-24B.0C.12D.24解析:由题意知(3x+3)2=x(6x+6),即x2+4x+3=0,解得x=-3或x=-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24。答案:A2.[2016·福州模拟]已知等比数列{an}的前n项和为Sn=x·3n-1-,则x的值为()A.B.-C.D.-解析:当n=1时,a1=S1=x-,①当n≥2时,an=Sn-Sn-1=-=x·(3n-1-3n-2)=2x·3n-2,因为{an}是等比数列,所以a1===,②由①②得x-=,解得x=。答案:C3.在等比数列{an}中,若a3,a7是方程x2+4x+2=0的两根,则a5的值是()A.-2B.-C.±D.解析:根据根与系数之间的关系得a3+a7=-4,a3a7=2,由a3+a7=-4<0,a3a7>0,所以a3<0,a7<0,即a5<0,由a3a7=a,所以a5=-=-。答案:B4.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则=()A.4n-1B.4n-1C.2n-1D.2n-1解析: ∴由①除以②可得=2,解得q=,代入①得a1=2,∴an=2×n-1=,∴Sn==4,∴==2n-1,选D。答案:D5.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.10C.8D.2+log35解析:由题意可知a5a6=a4a7,又a5a6+a4a7=18得a5a6=a4a7=9,而log3a1+log3a2+…+log3a10=log3(a1·a2·…·a10)=log3(a5a6)5=log395=log3310=10。答案:B6.已知各项均为正数的等比数列{an}中,a4与a14的等比中项为2,则2a7+a11的最小值为()A.16B.8C.2D.4解析:由题意知a4>0,a14>0,a4·a14=8,a7>0,a11>0,则2a7+a11≥2=2=2=8,当且仅当即a7=2,a11=4时取等号,故2a7+a11的最小值为8,故选B。答案:B7.在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是__________。解析:设公比为q,则由a8=a6+2a4,得a1q7=a1q5+2a1q3,q4-q2-2=0,解得q2=2(q2=-1舍去),所以a6=a2q4=4。答案:48.[2014·广东]等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=__________。解析:由等比数列的性质可知a1a5=a2a4=a,于是,由a1a5=4得a3=2,故a1a2a3a4a5=32,则log2a1+log2a2+log2a3+log2a4+log2a5=log2(a1a2a3a4a5)=log232=5。答案:59.[2015·徐州模拟]若等比数列{an}满足:a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________。解析:由a2+a4=20,a3+a5=40,得即解得q=2,a1=2,所以Sn===2n+1-2。答案:22n+1-210.[2015·湖北]设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q。已知b1=a1,b2=2,q=d,S10=100。(1)求数列{an},{bn}的通项公式;(2)当d>1时,记cn=,求数列{cn}的前n项和Tn。解析:(1)由题意有,即解得或故或(2)由d>1,知an=2n-1,bn=2n-1,故cn=,于是Tn=1+++++…+,①Tn=+++++…+。②①-②可得Tn=2+++…+-=3-,故Tn=6-。B级能力提升练11.已知数列{an}是首项为a1,公差为d(0<d<2π)的等差数列,若数列{cosan}是等比数列,则其公比为()A.1B.-1C.±1D.2解析:因为数列{cosan}是等比数列,所以cos2(a1+d)=cosa1·cos(a1+2d),cos2(a1+d)=cos(a1+d-d)·cos(a1+d+d)=cos2(a1+d)cos2d-sin2(a1+d)sin2d,所以sin2d[cos2(a1+d)+sin2(a1+d)]=0,所以sin2d=0,sind=0,因为0<d<2π,所以d=π。公比q===-1。答案:B12.已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),则以下结论一定正确的是()A.数列{bn}为等差数列,公差为qmB.数列{bn}为等比数列,公比为q2mC.数列{cn}为等比数列,公比为qm2D.数列{cn}为等比数列,公比为qmm解析: {an}是等比数列,∴=qmn+m-m(n-1)-m=qm,∴==(qm)m=qm2。答案:C13.[2016·天津模拟]已知等比数列{an}的前n项和为Sn,若S1,2S2,3S3成等差数列,且S4=。(1)求数列{an}的通项公式;(2)求证:Sn<...