22017-2018学年度高三第三次月考试卷数学(文)班一.选择题(共12小题,每小题5分,共60分)1.已知全集U=R,集合A={x|x<﹣2或x>2},则∁UA=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)4.已知曲线的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D.5.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减6.已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>7.若a>b>0,0<c<1,则()A.logac<logbcB.logca<logcbC.ac<bcD.ca>cb8.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()ABCD9.已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b10.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]11.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位12.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二.填空题(共4小题,每小题5分,共20分)13.已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.15.函数y=ax﹣4+1(a>0,a≠1)的图象恒过定点P,P在幂函数f(x)的图象上,则f(x)=.16.已知函数f(x)=,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是.三.解答题(共6小题,共70分)17.(12分)已知函数f(x)=(sinx+cosx)2+2cos2x.(Ⅰ)求f(x)最小正周期;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.18.(12分)设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0,(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.19.(12分)在△ABC中,角A、B、C所对的边分别是a、b、c,且(1)求的值;(2)若的值。20.(12分)若y=f(x)=Asin(ωx+φ)(A>0,ω>0,的部分图象如图所示.(I)求函数y=f(x)的解析式;(II)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象;若y=g(x)图象的一个对称中心为,求θ的最小值.21.(12分)设函数f(x)=,(1)求函数f(x)的单调区间;(2)若k>0,求不等式f′(x)+k(1﹣x)f(x)>0的解集.22.(10分)在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.第三次月考答案选择题:1-5,CAAAD,6-10,ABBCD,11-12,AD13,﹣114,(﹣∞,2]15.16.(0,1)17.解:(Ⅰ)f(x)=(sinx+cosx)2+2cos2x=sin2x+2sinxcosx+cos2x+2cos2x=1+sin2x+1+cos2x=sin(2x+)+2,…(4分)所以f(x)的最小正周期为T=π;…(6分)(Ⅱ)由0≤x≤得,0≤2x≤π,所以≤2x+≤;…(8分)根据正弦函数y=sinx的图象可知当时,f(x)有最大值为2+,…(11分)当时,f(x)有最小值为1.…(13分)18.解:(1)若a=1,解x2﹣4x+3<0得:1<x<3,解得:2<x≤3;∴命题p:实数x满足1<x<3,命题q:实数x满足2<x≤3; p...