专题66含有条件概率的随机变量问题【热点聚焦与扩展】纵观近几年的高考试题,离散型随机变量的分布列及其数字特征是高考命题的热点.往往以实际问题为背景考查离散型随机变量的数字特征在实际问题中的应用,其中不乏含有条件概率的问题.考查数据处理能力以及分析问题解决问题的能力.此类问题,概率统计问题一同考查.难度控制在中等.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、条件概率:事件在事件已经发生的情况下,发生的概率称为在条件下的条件概率,记为2、条件概率的计算方法:(1)按照条件概率的计算公式:(2)考虑事件发生后,题目产生了如何的变化,并写出事件在这种情况下的概率例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率:按照(1)的方法:设事件为“甲没中奖”,事件为“乙中奖”,则所求事件为,按照公式,分别计算,利用古典概型可得:,,所以按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖.那么轮到乙抽时,乙抽中的概率即为3、含条件概率的乘法公式:设事件,则同时发生的概率,此时通常用方案(2)进行计算4、处理此类问题要注意以下几点:(1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率)(2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别(3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决.【经典例题】例1.【2018届江西省新余市高三第二次模】从中不放回地依次取个数,事件“第一次取到的是奇数”“第二次取到的是奇数”,则()A.B.C.D.【答案】A【解析】由题意得,∴.选A.例2.【2018届青海省西宁市一模】先后掷一枚质地均匀骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为,设事件为“为偶数”,事件为“中有偶数,且”,则概率()A.B.C.D.【答案】A例3.【2018届江西省南昌市三模】质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.【答案】(1)(2)见解析【解析】分析:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.格”;事件表示“检测通过”;事件表示“检测良好”.∴∴.故所求概率为.(2)可能取值为分布列为所以,.例4.【2018届安徽省合肥市第一中学冲刺】深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:球队胜球队负总计甲参加甲未参加总计(1)求的值,据此能否有的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:.【答案】(1)有的把握(2)1)0.32,2)0.32,3)多让乙球员担当守门员,场次.详解:(1),有的把握认为球队胜利与甲球员参赛有关.(2)1)设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表3)因为,所以应该多让乙球员担当守门员,来扩大赢球场次.{例5.【2018届四川省成都市第七中学三诊】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为...