电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考数学大一轮复习 热点聚焦与扩展 专题33 多角度破解多变元范围问题-人教版高三全册数学试题VIP免费

备战高考数学大一轮复习 热点聚焦与扩展 专题33 多角度破解多变元范围问题-人教版高三全册数学试题_第1页
1/23
备战高考数学大一轮复习 热点聚焦与扩展 专题33 多角度破解多变元范围问题-人教版高三全册数学试题_第2页
2/23
备战高考数学大一轮复习 热点聚焦与扩展 专题33 多角度破解多变元范围问题-人教版高三全册数学试题_第3页
3/23
专题33多角度破解多变元范围问题【热点聚焦与扩展】在近几年的高考题目中,有些多变元(量)确定范围问题,一般地可利用已知条件进行消元,从而将多变量表达式转化为一元表达式,便于求得范围(最值),且消元的方法较多.另外,某些题目也可以利用数形结合法求解.本专题重点说明从消元、数形结合等角度解答此类问题.(一)消元法:1、消元的目的:若表达式所含变量个数较多,则表达式的范围不易确定(会受多个变量的取值共同影响),所以如果题目条件能够提供减少变量的方式,则通常利用条件减少变量的个数,从而有利于求表达式的范围(或最值),消元最理想的状态是将多元表达式转为一元表达式,进而可构造函数求得值域2、常见消元的方法:(1)利用等量关系消元:若题目中出现了变量间的关系(等式),则可利用等式进行消元,在消元的过程中要注意以下几点:①要确定主元:主元的选取有这样几个要点:一是主元应该有比较明确的范围(即称为函数的定义域);二是构造出的函数能够解得值域(函数结构不复杂)②若被消去的元带有范围,则这个范围由主元承担.例如选择为主元,且有,则除了满足自身的范围外,还要满足(即解不等式)(2)换元:常见的换元有两种:①整体换元:若多元表达式可通过变形,能够将某一个含多变量的式子视为一个整体,则可通过换元转为一元表达式,常见的如等,例如在中,可变形为,设,则将问题转化为求的值域问题注:在整体换元过程中要注意视为整体的式子是否存在范围,即要确定新元的范围②三角换元:已知条件为关于的二次等式时,可联想到三角公式,从而将的表达式转化为三角函数表达式来求得范围.因为三角函数公式的变形与多项式变形的公式不同,所以在有些题目中可巧妙的解决问题,常见的三角换元有:平方和:联想到正余弦平方和等于1,从而有:推广:平方差:联想到正割()与正切()的平方差为1,则有,推广:注:若有限定范围时,要注意对取值的影响,一般地,若的取值范围仅仅以象限为界,则可用对应象限角的取值刻画的范围3、消元后一元表达式的范围求法:(1)函数的值域——通过常见函数,或者利用导数分析函数的单调性,求得函数值域(2)均值不等式:若表达式可构造出具备使用均值不等式(等)的条件,则可利用均值不等式快速得到最值.(3)三角函数:①形如的形式:则可利用公式转化为的形式解得值域(或最值)②形如:则可通过换元将其转化为传统函数进行求解③形如:,可联想到此式为点和定点连线的斜率,其中为单位圆上的点,通过数形结合即可解得分式范围(二)放缩消元法1、放缩法求最值的理论基础:不等式的传递性:若,则2、常见的放缩消元手段:(1)抓住题目中的不等关系,若含有两个变量间的不等关系,则可利用这个关系进行放缩消元(2)配方法:通过利用“完全平方式非负”的特性,在式子中构造出完全平方式,然后令其等于0,达到消元的效果(3)均值不等式:构造能使用均值不等式的条件,利用均值不等式达到消元的效果(4)主元法:将多元表达式视为某个变量(即主元)的函数,剩下的变量视为常数,然后利用常规方法求得最值从而消去主元,达到消元的效果.3、放缩消元过程中要注意的地方:(1)在放缩过程中应注意所求最值与不等号方向的对应关系,例如:若求最小值,则对应的不等号为“”;若求最大值,则对应的不等号为“”.放缩的方向应与不等号的方向一致(2)对进行放缩消元后的式子,要明确是求其最大值还是最小值.放缩法求最值的基础是不等式的传递性,所以在求最值时要满足其不等号的方向一致.若将关于的表达式进行放缩消去,得到,例如,则下一步需要求出的最小值(记为),即,通过不等式的传递性即可得到.同理,若放缩后得到:,则需要求出的最大值(记为),即,然后通过不等式的传递性得到(3)在放缩的过程中,要注意每次放缩时等号成立的条件能够同时成立,从而保证在不等式中等号能够一直传递下去(三)数形结合法1、数形结合的适用范围:(1)题目条件中含有多个不等关系,经过分析后可得到关于两个变量的不等式组(2)所求的表达式具备一定的几何意义(截距,斜率,距离等)2、如果满足以上情况,则可以考...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

备战高考数学大一轮复习 热点聚焦与扩展 专题33 多角度破解多变元范围问题-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部