电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考数学大一轮复习 热点聚焦与扩展 专题18 恒成立问题——最值分析法-人教版高三全册数学试题VIP免费

备战高考数学大一轮复习 热点聚焦与扩展 专题18 恒成立问题——最值分析法-人教版高三全册数学试题_第1页
1/35
备战高考数学大一轮复习 热点聚焦与扩展 专题18 恒成立问题——最值分析法-人教版高三全册数学试题_第2页
2/35
备战高考数学大一轮复习 热点聚焦与扩展 专题18 恒成立问题——最值分析法-人教版高三全册数学试题_第3页
3/35
专题18恒成立问题——最值分析法【热点聚焦与扩展】不等式恒成立问题常见处理方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③最值法:讨论最值或恒成立;④讨论参数.最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题.此方法考查学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功.是函数与导数中的难点问题,下面通过典型例题总结此类问题的解法----最值分析法.1、最值法的特点:(1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参(2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论2、理论基础:设的定义域为(1)若,均有(其中为常数),则(2)若,均有(其中为常数),则3、技巧与方法:(1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作:①观察函数的零点是否便于猜出(注意边界点的值)②缩小参数与自变量的范围:通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析)观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性.如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号.(3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内.【经典例题】例1.【2018届四川高三(南充三诊)联合诊断】已知定义在上的偶函数在上单调递减,若不等式对任意恒成立,则实数的取值范是()A.B.C.D.【答案】A【解析】因为定义在上的偶函数在上递减,所以在上单调递增,若不等式对于上恒成立,则对于上恒成立,即对于上恒成立,(2)当,即时,在上恒成立,单调递减,因为最大值,最小值,所以,综合可得,无解,(3)当,即时,在上,恒成立,为减函数,在上,恒成立,单调递增,故函数最小值为,若,即,因为,则最大值为,此时,由,求得,综上可得;若,即,因为,则最大值为,点睛:本题主要考查了函数的奇偶性和单调性的综合应用,函数的恒成立问题,着重考查了转化思想、分类讨论的数学思想方法,试题有一定的难度,属于难题,本题的解答中利用函数的奇偶性、单调性,可得在上恒成立,令,求的函数的最大值和最小值,从而得到实数的取值范围.例2.若关于的不等式,对任意恒成立,则的取值范围是()A.B.C.D.【答案】B【解析】设y=x3﹣3x2﹣9x+2,则y′=3x2﹣6x﹣9,令y′=3x2﹣6x﹣9=0,得x1=﹣1,x2=3, 3∉[﹣2,2],∴x2=3(舍),列表讨论: f(﹣2)=﹣8﹣12+18+2=0,f(﹣1)=﹣1﹣3+9+2=7,f(2)=8﹣12﹣18+2=﹣20,∴y=x3﹣3x2﹣9x+2在x∈[﹣2,2]上的最大值为7,最小值为﹣20, 关于x的不等式x3﹣3x2﹣9x+2≥m对任意x∈[﹣2,2]恒成立,∴m≤﹣20,故选:B.例3.已知函数,曲线在点处的切线方程为.其中为自然对数的底数(1)求的值(2)如果当时,恒成立,求实数的取值范围【答案】(1)1,1;(2).【解析】解:(1)(2)思路:恒成立不等式为:,若参变分离,则分离后的函数过于复杂,不利于求得最值,所以考虑利用最值法,先变形不等式,由于的符号不确定(以为界),从而需进行分类讨论.当时,不等式变形为:,设,可观察到,则若要时,,则需,进而解出,再证明时,即可.将的范围缩至时再证明时,即可.解:由(1)可得恒成立的不等式为:当时,设,可得在单调递增,即不等式恒成立当时,同理,在单调递增即时不等式在恒成立综上所述,.例4.设函数(其中),,已知它们在处有相同的切线.(1)求函数,的解析式;(2)若对恒成立,求实数的取值范围.【答案】(1);(2).解:令,只需令均成立,(上一步若直接求单调增区间,则需先对的符号进行分类讨论.但通过代入(,便于计算),解得了要满足...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

备战高考数学大一轮复习 热点聚焦与扩展 专题18 恒成立问题——最值分析法-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部