专题04新定义集合问题的破题利器考纲要求:了解创新型问题的基本解法,读懂创新型问题的基本背景.基础知识回顾:新定义题型是近几年高考命题中经常出现的一种命题方式,考查考生阅读、迁移能力和继续学习的潜能.当题目的条件中提供一种信息,需要解题者很好地把握这种信息,并恰当地译成常见数学模型,然后按通常数学模型的求解方法去解决.这种信息常常用定义的方式给出,有时规定一种运算,有时把一些未学过的知识内容拿来用定义方式给出.因此,解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算。以集合为背景的创新性问题是命题的一个热点,这类题目常以问题为核心,考查考生探究,发现的能力,常见的命题形式有:新定义、新运算与性质等.应用举例:类型一:定义新运算【例1】【2017河南郑州质检】]已知集合A,B,定义集合A与B的一种运算A⊕B,其结果如下表所示:A{1,2,3,4}{-1,1}{-4,8}{-1,0,1}B{2,3,6}{-1,1}{-4,-2,0,2}{-2,-1,0,1}A⊕B{1,4,6}∅{-2,0,2,8}{-2}按照上述定义,若M={-2012,0,2013},N={-2013,0,2014},则M⊕N=________.【答案】{-2012,2013,-2013,2014}【例2】【2017贵州省贵阳市高三适应性考试】为两个非空集合,定义集合,若,,则()A.B.C.D.【答案】C【解析】由得,由的定义可知:,故选C.类型二:定义新概念【例3】【2017北京市朝阳区高三二模】已知两个集合,满足.若对任意的,存在,使得(),则称为的一个基集.若,则其基集元素个数的最小值是____.【答案】4【解析】若基集元素个数不超过三个:互不相等),则最多可表示九个元素,因此基集元素个数的最小值是4个,如【例4】设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+bi|a,b为整数,i为虚数单位}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.其中的真命题是______.(写出所有真命题的序号)【答案】①②方法、规律归纳:(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.(3)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.实战演练:1.【2017河北武邑中学高三周考】用表示非空集合中的元素个数,定义,若,且,由的所有可能值构成的集合为,那么等于()A.4B.3C.2D.1【答案】D2.【2017湖南石门县一中高三9月月考】对于任意两个正整数,定义某种运算“※”,法则如下:当都是正奇数时,※;当不全为正奇数时,※,则在此定义下,集合※的真子集的个数是()A.B.C.D.【答案】C【解析】试题分析:若,且都是正奇数时,取值的可能有共种;若且不全为正奇数时,取值的可能有共种,所以有个元素,其真子集有.考点:新定义,真子集的概念.【思路点晴】空集是任何集合的子集,空集是任何非空集合的真子集.若一个集合含有个元素,则子集个数为个,真子集个数为.判断两集合的关系常用两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.本题主要思路就是根据新定义,按两种情况列举符合题意的点集.3.【2017江苏省苏北三市高三年级第三次模拟考试】已知集合,对于集合的两个非空子集,,若,则称为集合的一组“互斥子集”.记集合的所有“互斥子集”的组数为(视与为同一组“互斥子集”).(1)写出,,的值;(2)求.【答案】(1),,.(2).4.【2017北京市石景山区高三3月统一练习】已知集合.对于,,定义与之间的距离为.(Ⅰ)写出中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合满足:,且任意两元素间的距离均为2,求集合中元素个数的...