圆锥曲线2622.(本小题共14分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(I)解:因为点B与A关于原点对称,所以点得坐标为.设点的坐标为由题意得化简得.故动点的轨迹方程为(II)解法一:设点的坐标为,点,得坐标分别为,.则直线的方程为,直线的方程为又,所以=,解得。因为,所以故存在点使得与的面积相等,此时点的坐标为.解法二:若存在点使得与的面积相等,设点的坐标为则.因为,所以所以即,解得因为,所以故存在点S使得与的面积相等,此时点的坐标为.23.(本小题满分12分)已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.w_ww.k#s5_u.co*m本小题主要考察直线、轨迹方程、双曲线等基础知识,考察平面机袭击和的思想方法及推理运算能力.解:(1)设P(x,y),则化简得x2-=1(y≠0)………………………………………………………………4分(2)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2)(k≠0)与双曲线x2-=1联立消去y得w_ww.k#s5_u.co*m(3-k)2x2+4k2x-(4k2+3)=0由题意知3-k2≠0且△>0设B(x1,y1),C(x2,y2),则y1y2=k2(x1-2)(x2-2)=k2[x1x2-2(x1+x2)+4]=k2(+4)=w_ww.k#s5_u.co*m②当直线BC与x轴垂直时,起方程为x=2,则B(2,3),C(2,-3)AB的方程为y=x+1,因此M点的坐标为(),同理可得因此=0w_ww.k#s5_u.co*m综上=0,即FM⊥FN故以线段MN为直径的圆经过点F………………………………………………12分24.(本小题满分12分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),于是A,B两点的坐标满足方程组由方程组消去Y并整理,得由得设线段AB是中点为M,则M的坐标为以下分两种情况:(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是(2)当K时,线段AB的垂直平分线方程为令x=0,解得25.(本小题满分14分)设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为.当且仅当时等号成立,即三点共线时等号成立.(2)当点C(x,y)同时满足①P+P=P,②P=P时,点是线段的中点.,即存在点满足条件。